
Trading Integrity for Availability by Means of Explicit Runtime Constraints

Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka
Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{lorenz.froihofer|johannes.osrael|karl.goeschka}@tuwien.ac.at

Abstract

Data integrity is one of the dependability attributes in
data-centric applications. However, applications exist, e.g.,
safety or mission critical systems, where availability is more
important for dependability than strict data integrity. Con-
sequently, in such systems availability can be increased by
temporarily relaxing data integrity. Potential inconsisten-
cies are accepted by constraint validation on replicated
copies, which are potentially stale in the face of network
partitions. Such consistency threats need to be bound and
eventually resolved during reconciliation.

The contribution of this paper is a solution approach to
this trade-off between availability and integrity by means of
explicit runtime-management of data integrity constraints
and consistency threats as well as reconciliation support.

1 Introduction

Dependability [1], with two of its attributes being avail-
ability (readiness for correct service) and integrity (absence
of improper system alterations), is of major importance
in today’s software systems [14], especially for distributed
systems, which are prone to several errors. As failure model
for our work, we consider node and link failures, assum-
ing the crash failure model [5] for nodes—pause-crash for
server nodes—and links may fail by losing some messages
but do not duplicate or corrupt messages. However, as node
and link failures cannot be differentiated at the time when
they occur [7], we initially treat node failures as partitions
with only a single node. Whether a node or link failed will
be detected afterwards, when the node is reachable again.

Replication [8] is a well-known mechanism to provide
fault tolerance for improved availability in case of node
and link failures. For example, the primary partition repli-

cation protocol [13] allows a single partition (the primary
partition) to continue operation while other partitions are
blocked. This prevents replica conflicts as (write) opera-
tions are only allowed in the primary partition. To further
increase availability, write access in other partitions would
be desirable—at the price of replica inconsistency.

Besides replica consistency that defines the correct
effect of operations on different replicas with respect
to a particular replica consistency model, e.g., 1-copy-
serializability [4], we distinguish between two further kinds
of consistency with respect to data integrity: Concurrency
consistency (isolation) defines the correctness of data with
respect to concurrent, interleaving access to single data
items; constraint consistency defines the correctness of data
with respect to data integrity constraints that stem from the
application requirements. Within this paper, we focus on
constraint consistency, influenced by replica consistency, as
both are affected by node and link failures.

We classify systems into three different categories based
on the major design focus for building a system: service-
centric, data-centric, and resource-centric systems. Service-
centric systems build upon the notion of a service and one
major design focus for these systems is to concentrate on
composition and interaction. Data-centric systems focus
on the data of an application—entity relationship (ER) di-
agrams or Unified Modeling Language (UML) class dia-
grams are often used during the design of data-centric ap-
plications. Resource-centric applications are mostly con-
cerned about (possibly physical) resources such as CPU
power or network bandwidth.

Moreover, we differentiate between tightly-coupled and
loosely-coupled systems. Tightly-coupled systems are
nowadays typically implemented by using object-oriented
technologies, apply Remote Method Invocation (RMI) as
the typical communication paradigm and are often deployed
in enterprise networks. Loosely-coupled systems are more

froihofer
Textfeld
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This is the author's version. The original publication is available at: http://dx.doi.org/10.1109/COMPSAC.2006.172



heterogeneous in their nature, often apply message pass-
ing as the communication paradigm, increasingly use Web
services technology, and are intended to be deployed in
Internet-scale networks. Within this paper, we focus on the
category of tightly-coupled, data-centric applications, im-
plemented by means of object-oriented software engineer-
ing.

Our system model has three major states: Healthy sys-
tem (no failures, no inconsistencies), degraded mode (fail-
ures, inconsistencies are possibly introduced), and reconcil-
iation mode (no failures, inconsistencies have to be cleaned
up). To limit the degree of inconsistency introduced to the
system during the degraded period, we require that soft-
ware manages constraints and consistency threats explicitly
during runtime. This approach requires that integrity con-
straints are implemented within constraint checking classes,
similar to [15], and provide metadata about these con-
straints. Our middleware afterwards provides the support
for runtime-management of constraint consistency in each
of the three major system states.

Paper overview. Section 2 provides a short overview of
our constraint classifications, the constraint model and in-
troduces the notion of a consistency threat. In Section 3
we describe how the trade-off between availability and in-
tegrity is performed. The consequences of our trading—the
reconciliation of possible inconsistencies—is described in
Section 4. Section 5 gives some insight into the implemen-
tation of our approach. We give an overview of related work
in Section 6 and conclude our paper and provide an outlook
to future work in Section 7.

2 Constraints and consistency threats

The Object Constraint Language (OCL), which is part of
the UML specification, already provides the basis for our
classification of constraints: preconditions, postconditions
and invariant constraints. Preconditions have to be validated
before the call to a method will be performed, postcondi-
tions have to be satisfied after the call to a method returns.
Invariant constraints are defined solely on the state of ob-
jects (static constraints) and hence can be validated at any
time. Here, we distinguish between hard and soft invariant
constraints [10]. Hard invariants are validated immediately
after a call to a method which might change the state con-
strained by this specific invariant. We call that invariant an
affected constraint of the method. Affected soft invariants
are checked at the end of a transaction. Similar to an af-
fected constraint, a method that triggers constraint valida-
tion is called an affected method of the constraint. All ob-
jects restricted by a constraint are called affected objects of
the constraint. Of course, validation of a constraint requires
access to all affected objects.

Generally, a data integrity constraint is a predicate on
the system state and can either be satisfied or violated. We
implement data integrity constraints by constraint valida-
tion classes where one class represents exactly one integrity
constraint. Each class provides a validate(...) method
which is called to validate the constraint. Constraints are
defined within the context of a class for invariants (the con-
text class of the constraint) or the context of a method for
pre- and postconditions. To validate invariant constraints,
an instance of the context class (the context object) is pro-
vided as parameter to the validate method of the constraint.
Certain invariant constraints might not even need a context
object because they obtain the objects needed for validation
through a query operation. For pre- and postconditions, we
provide the called method and the arguments in addition to
the context object as parameter to the validate method of a
constraint.

In a distributed system, the validation of integrity con-
straints is more complex as constraint validation itself be-
comes subject to node and link failures. Hence, constraints
might be uncheckable if affected objects cannot be reached.
If the objects are replicated, we might be able to validate
constraints based on backup copies but the result might not
be reliable as the corresponding primary copies might al-
ready have changed in another partition—the copies used
for validation are possibly stale. Hence, validation based on
primary copies—although not possible in degraded mode—
might have produced a different validation result. We call
such situations a consistency threat.

3 Availability improvements

Following a strict consistency model would require to
block or reject operations causing consistency threats in
degraded mode. To increase availability, we temporar-
ily accept potential inconsistencies (consistency threats) in
the system and hence explicitly trade integrity for avail-
ability. The application-specific trade-off is configured
by the application developer through the specification of
tradeable constraints (may be relaxed during degraded pe-
riods) and non-tradeable constraints (critical for correct
system operation)—according to an application’s require-
ments. Consistency threats for non-tradeable constraints are
automatically rejected with the usual effect that the current
operation/transaction is aborted. Operations causing con-
sistency threats for tradeable constraints are subject to a ne-
gotiation mechanism to decide whether to accept or reject
the consistency threat. Negotiation can either be statically
configured during application deployment or dynamically
performed through an application-specific callback handle.
If the consistency threat is accepted, the system stores this
threat and allows to associate some information with this
threat such as affected objects or application-specific data.



Whenever we accept a consistency threat, we store at
least the unique name identifying the constraint that pro-
duced the consistency threat. Moreover, depending on the
“starting point” of constraint validation, we have to differ-
entiate two cases: (i) if validation of the constraint starts
from a context object, we have to store at least an iden-
tifier for the context object that is later used as input to
the constraint validation method and (ii) if validation of
the constraint starts from a set of objects obtained by a
query operation, we only have to store the constraint as
no input to the validate method is required. These require-
ments state only the minimum information necessary to re-
evaluate constraints. In practice, we allow to enrich the
data of a consistency threat with application-specific infor-
mation. As pre- and post-conditions cannot simply be re-
evaluated, we do not store consistency threats for such con-
straints. Hence, the effects of trading pre- or post-conditions
have to be covered by invariant constraints. Consequently,
developers should prefer invariant constraints over pre- and
post-conditions.

4 Reconciling constraint consistency

After network links are repaired or nodes recovered,
we have to re-evaluate accepted consistency threats. For
this process, we perform a re-validation of associated con-
straints. Depending on the result of the constraint valida-
tion, our middleware takes different actions. If the con-
straint is satisfied and there was no replica conflict (or no
replication is used), the middleware removes the threat and
all identical threats from the set of accepted consistency
threats. If there was a replica conflict for the constraint and
a reconciliation instruction1 of at least one of the identical
threats specifies that the application should be informed of
this situation, the middleware notifies the application. If
the constraint is violated, this constraint violation must be
resolved—either by middleware-supported rollback to pre-
vious states or by asking the application to perform com-
pensating actions. If the constraint is still threatened, the
reconciliation of the consistency threat has to be postponed
until further network partitions are re-unified.

5 Prototype implementation

We integrated these concepts into a system architec-
ture for tightly-coupled data-centric systems where man-
agement of explicit constraints is one essential part of the
overall architecture [11]. This management of explicit con-
straints is performed by the Constraint Consistency Man-
ager (CCMgr), which also triggers the negotiation of new

1Such a reconciliation instruction might be introduced by the applica-
tion during negotiation of a consistency threat.

consistency threats and drives the reconciliation of accepted
consistency threats.

Our implementation of this system architecture is based
on the Enterprise JavaBeans (EJB) platform and integrated
into the JBoss application server. EJB uses entity beans to
encapsulate the application data. This architecture fits our
data-centric, object-oriented approach very well. The data
integrity constraints are defined upon these entity beans and
are implemented as explicit constraint classes. The con-
straints of an application are specified in a configuration file
which is read when the application is deployed into the ap-
plication server. The information provided is used to regis-
ter the constraints appropriately with the constraint reposi-
tory.

One key requirement for the implementation of our ap-
proach with explicit runtime constraints is to be able to in-
tercept the calls to methods and to know the method and
the object on which the method was called. This can be
achieved by registration of interceptors with the JBoss invo-
cation service and the JBoss Aspect Oriented Programming
(AOP) framework. These interceptors further register the
CCMgr as transactional resource at the transaction manager
to support the notion of soft constraints.

The invocation interceptors notify the CCMgr before and
after method invocations to enable appropriate constraint
validation. The CCMgr looks up affected constraints from
the constraint repository by using different criteria, such as
the class of an object/entity bean, the called method, or the
constraint type (pre-, postcondition, invariant hard, or in-
variant soft). Validation of affected constraints is triggered
by the CCMgr according to the constraint type. Finally, the
CCMgr also takes appropriate actions depending on the val-
idation outcome (e.g., abort the current transaction in case
of constraint violations).

Detection of consistency threats can also be performed
through invocation interception. Directly before the CCMgr
triggers the validation of a constraint, it starts to collect en-
tity beans on which invocations are performed and stops
this behavior after the validation of the constraint returns.
This behaviour is also supported by invocation interceptors.
Consequently, the CCMgr knows which entity beans were
used for constraint validation and can ask the replication
manager (responsible for managing the different replicas of
a single “logical” object) for each entity bean, whether the
currently used replica was possibly stale. If one of the af-
fected entity beans was possibly stale, a consistency threat
occurred and negotiation of this threat is triggered.

After the Group Membership Service (GMS) notifies the
replication manager of reunified network partitions, the sys-
tem starts re-establishment of integrity. For this process, the
replication manager propagates missed updates from pri-
mary copies to backup copies that were located in other
partitions. Replica conflicts are solved based on rollback



or with application callback. Constraint consistency is re-
established according to the description provided in Sec-
tion 4.

6 Related work

The trade-off between consistency and availability has
already been investigated with respect to concurrency con-
sistency [3, 9] and replica consistency [6, 12, 16]. The
trade-off between constraint consistency and availability,
however, is still rather poorly researched. Balzer [2] al-
lows constraint violations temporarily by using pollution
markers. Each pollution marker corresponds to an integrity
constraint. If the integrity constraint is not satisfied, the
corresponding pollution marker is set. At the time the in-
tegrity constraint is satisfied again, the pollution marker is
removed. The system tolerates inconsistent data in the way
that the report generators use the pollution markers to subse-
quently mark reports that are affected by inconsistent data.
Although the storage of consistency threats roughly corre-
sponds to the pollution markers, we do not accept constraint
violations and rather aim at fully consistent data in a healthy
system. Consequently, the pollution markers are a means
to trade integrity within a healthy system while consistency
threats are a means to cope with degraded system situations.

7 Conclusion

In this paper, we provided a solution approach to the
trade-off between data integrity and availability. The
application-specific trade-off configuration is supported
through explicit data integrity constraints. The runtime-
management of these constraints (validation, detection and
proper treatment of consistency threats) is afterwards per-
formed by our middleware enhancement. Hence, our mid-
dleware supports this trade-off while the tasks requiring ap-
plication specific knowledge (specification of constraints,
negotiation and reconciliation of consistency threats) have
to be performed by the application.

8 Acknowledgments

This work has been partially funded by the Euro-
pean Community under the FP6 IST project DeDiSys
(Dependable Distributed Systems, contract 004152,
http://www.dedisys.org/).

We thank Hubert Künig for many in-depth discussions of
our solution approach. We further thank Markus Horehled
and Klaus Fuchshofer who contributed the proof-of-concept
prototype implementation integrated into the JBoss applica-
tion server.

References

[1] A. Avižienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.
Basic concepts and taxonomy of dependable and se-
cure computing. IEEE Trans. Dependable Sec. Comput.,
1(1):11–33, 2004.

[2] R. Balzer. Tolerating inconsistency. In Proceedings of
the 13th international conference on Software engineering,
pages 158–165. IEEE Computer Society Press, 1991.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. SIGMOD
Rec., 24(2):1–10, 1995.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[5] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[6] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consis-
tency in a partitioned network: a survey. ACM Comput.
Surv., 17(3):341–370, 1985.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[8] A. A. Helal, A. A. Heddaya, and B. B. Bhargava. Replica-
tion Techniques in Distributed Systems. Kluwer Academic
Publishers, 1996.

[9] M. Herlihy and J. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463–492, 1990.

[10] H. V. Jagadish and X. Qian. Integrity maintenance in object-
oriented databases. In Proceedings of the 18th International
Conference on Very Large Data Bases, pages 469–480. Mor-
gan Kaufmann Publishers Inc., 1992.

[11] J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer,
P. Galdámez, and F. D. Muñoz Escoi. A system architec-
ture for enhanced availability of tightly coupled distributed
systems. In Proceedings of the 1st International Conference
on Availability, Reliability and Security. IEEE Computer So-
ciety, April 2006.

[12] C. Pu and A. Leff. Replica control in distributed systems:
an asynchronous approach. In SIGMOD ’91: Proceed-
ings of the 1991 ACM SIGMOD international conference on
Management of data, pages 377–386, New York, NY, USA,
1991. ACM Press.

[13] A. Ricciardi, A. Schiper, and K. Birman. Understanding par-
titions and the “non partition” assumption. In IEEE Proc. of
Fourth Workshop on Future Trends of Distributed Systems,
1993.

[14] R. Smeikal and K. M. Goeschka. Fault-tolerance in a dis-
tributed management system: a case study. In ICSE ’03:
Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 478–483, Washington, DC, USA,
2003. IEEE Computer Society.

[15] B. Verheecke and R. V. D. Straeten. Specifying and imple-
menting the operational use of constraints in object-oriented
applications. In Proceedings of the Fortieth International
Conference on Tools Pacific, pages 23–32. Australian Com-
puter Society, Inc., 2002.

[16] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM
Trans. Comput. Syst., 20(3):239–282, 2002.




