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Abstract

Distributed systems that are subject to network partitions
often face the conflicting requirements of high availability
and strong consistency. While optimistic replication proto-
cols address the problem based on the assumption that con-
flicting (write) operations are rare, data partitioning allows
to prevent conflicts at all through (non-redundant) distri-
bution of data items throughout a system. Within this paper
we contribute with a middleware-supported approach based
on explicit runtime data integrity constraints that allows for
a combination of optimistic replication protocols and data
partitioning. Based on an example, we show how this con-
cept can be applied in order to gain high availability while
still limiting the amount of inconsistency introduced to a
system.

1. Introduction and related work

Network partitions have been subject to extensive re-
search for many years and interesting results have already
been achieved. Already in 1985, Davidson et al. [3] con-
tributed with a survey about consistency in partitioned net-
works, where they discussed several optimistic and pes-
simistic strategies to address the conflicting requirements
of availability on the one hand and correctness (integrity,
consistency) on the other hand. Actually, this interdepen-
dence is stated more precisely by the CAP principle [4, 7],
specifying that a system can only fully satisfy two of the
three properties: Consistency, Availability, and Partition-
tolerance (strong CAP principle). However, the weak CAP
principle already defines that the stronger guarantees are
provided for two of these properties, the weaker guarantees
can be provided for the third. Obviously, there is a trade-
off between these requirements. This trade-off potential is

addressed, for example, through data partitioning [2] and
optimistic replication [8] techniques.

Data partitioning techniques address network partitions
through (non-redundant) distribution of data items across
the system. For example, tickets of a ticket booking system
might be distributed across nodes, which subsequently can
sell their amount of tickets individually. Of course, redistri-
bution of tickets between the nodes is possible in order to
avoid one node running out of tickets. However, according
to the CAP principle, this behaviour relaxes the availabil-
ity requirement as during a network partition, some parti-
tions might run out of tickets while other ones might still
have several of them. Optimistic replication techniques on
the other hand relax the consistency requirements based on
the assumption that (write) conflicts are rare and therefore
the benefit gained in higher availability is worth the effort
caused through conflict resolution.

However, viewing data items on their own is often not
sufficient, as data are generally subject to several correct-
ness criteria, including data integrity constraints that repre-
sent application requirements. Consequently, we proposed
and implemented a middleware-based approach for adap-
tive dependability [1] by balancing availability and integrity
through the use of explicit runtime constraints [5]. Within
this paper, we contribute with an approach to use explicit
runtime constraints in order to address network partitions
through a combination of data partitioning and optimistic
replication strategies.

2 Partition-sensitive constraints

In order to support an application with the balancing of
availability and integrity, we require applications to pro-
vide the data integrity constraints within explicit constraint
checking classes, one class per constraint. A constraint im-
plementation has to adhere to a predefined interface and
implement a validate(. . . ) method, providing true if the



constraint is satisfied and false, if it is violated. While the
validation of such a constraint is straightforward to imple-
ment, the maintenance of consistency with respect to the
constraints is a challenging task within partitionable sys-
tems.

Imagine a distributed replicated flight booking system,
for example, with an integrity constraint (ticket-constraint)
stating that the system must not sell more tickets for a flight
than available seats in the airplane. Within this system,
we have an airplane with 80 seats of which 70 are already
booked. The system now suffers from a network partition.
Due to the high availability requirement for this system, we
allow write access in different partitions, temporarily ac-
cepting potential inconsistencies. Assume that customers
buy seven tickets in one partition, which now has a total of
77 sold tickets. The ticket-constraint is satisfied in this parti-
tion. Subsequently, customers buy eight tickets in the other
partition, leading to 78 sold tickets. The ticket-constraint is
also satisfied in this partition. After the network partitions
are reunified, the system has to reconcile the updates made
in the different partitions, effectively leading to 85 sold tick-
ets in total. Consequently, our ticket-constraint is now vio-
lated. To solve this issue, five customers will be rebooked
to another flight (compensating action).

The previous example shows that although a constraint
is satisfied in degraded mode while node or link failures are
present, it might be violated afterwards when the system
recovers from a previous failure. Consequently, constraint
validation is not reliable during degraded mode and we are
only able to determine that a constraint is possibly satis-
fied, possibly violated or even uncheckable if the constraint
requires unreachable objects for validation. We call such
situations a consistency threat [5].

While rebooking five passengers to another flight solves
the inconsistency, it would be desirable to not introduce
such an inconsistency at all. For some applications, where
the data can be partitioned like the tickets in the flight book-
ing example, a significant improvement is possible. Our
middleware makes use of group membership (GMS) and
group communication (GC) primitives in order to imple-
ment the replication support. Similar to Gifford’s solution
of weighted replica copies [6], we allow the association of
weights with server nodes. The GMS component can there-
after calculate the weight of the current partition in relation
to the whole system. This value is provided by the mid-
dleware to the application in order to take the current par-
tition weight into account for constraint validation, effec-
tively leading to partition-sensitive integrity constraints.

Based on these prerequisites, data can be partitioned dur-
ing runtime by using partition-sensitive constraints. The
ticket-constraint, for example, saves the number of tickets
sold in healthy mode. In degraded mode, it partitions the
number of still available tickets t (number of seats minus
number of tickets sold in healthy mode) according to the

partition weight, effectively leading to tx available tickets
for a partition x (t =

∑n
x=1 tx). The constraint will only

be satisfied within partition x, if the number of tickets sold
during degradation is below or equal tx. This improves be-
haviour in degraded mode and introduces almost no incon-
sistencies based on the fact that tickets are mainly sold and
rarely cancelled. In the best case, no inconsistencies are in-
troduced at all, although write access in different partitions
is possible.

3 Conclusion

Partition-sensitive constraints support a combination of
optimistic replication and data partitioning in order to re-
duce the amount of inconsistency introduced into a dis-
tributed system while network partitions are present. This
reduces the amount of inconsistencies to be cleaned up
while the system reconciles the updates performed in dif-
ferent network partitions during degraded mode. Conse-
quently, partition-sensitive constraints can increase the per-
formance of the reconciliation phase.
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