
Experiences from Building Service and Object Replication Middleware

Johannes Osrael, Lorenz Froihofer, Karl M. Goeschka

Institute of Information Systems
Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Vienna, Austria
johannes.osrael|lorenz.froihofer|karl.goeschka@tuwien.ac.at

Abstract

Replication is a primary means to achieve fault toler-
ance in distributed systems. While replication techniques
are well known and have been widely applied in distributed
object and database systems, they have not yet been exten-
sively used in service oriented systems. However, if the suc-
cess of service oriented computing shall continue in critical
settings, replication middleware will play a crucial role in
service oriented infrastructures. Thus, we contribute with a
discussion of our experiences in building distributed object
and service replication middleware and present the main
lessons learned. Our conclusions are drawn from several
replication middleware implementations built upon J2EE,
.NET, CORBA, and Axis2.

1 Introduction

Service oriented computing is an emerging computing
paradigm utilizing services to support the rapid develop-
ment of distributed applications in heterogeneous environ-
ments. Complex services provide novel problems and pose
new challenges for many disciplines (e.g. enterprise appli-
cation integration, worflow management, etc.). Definitely,
fault tolerance is one of the most important ones. Fault tol-
erance ensures that a service failure can be avoided when
faults are present in the system [4]. Redundancy is a pre-
requisite for fault tolerance. Replication of both hardware
and software resources is one important means to introduce
redundancy and thus to enable fault tolerance.

Replication in service oriented systems is rather in its
infancy — although replication has been researched for
decades in classical systems such as databases, file systems,

or distributed object systems. However, sound replication
solutions are urgently required for service oriented architec-
tures to close the dependability gap currently faced [16, 8].

In the DeDiSys project (Dependable Distributed Sys-
tems, http://www.dedisys.org) we are working both on ad-
vanced replication mechanisms for distributed object sys-
tems and basic replication mechanisms for Web service
based systems. Web services are currently the dominant
approach for realizing service oriented architectures. The
interface of a Web service is described in the Web Ser-
vice Description Language (WSDL [10]). The XML-based
messaging protocol SOAP [10] is used for communication
between Web services. Many other Web services stan-
dards/specifications exist, which are for instance focused on
addressing, security, coordination, etc.

In the last years, we have designed and implemented
replication middleware for both Web services and tradi-
tional distributed objects. In this paper, we summarize our
experiences and present the main lessons learned. The re-
mainder of this paper is structured as follows: Section 2
introduces our middleware prototypes, namely three vari-
ants (.NET, J2EE, CORBA) of a distributed object replica-
tion middleware for balancing data integrity with availabil-
ity and a replication middleware for Web services built upon
the Java-based Axis2 SOAP engine [2]. Section 3 presents
the five main lessons learned. Related work is presented in
section 4 before we conclude in section 5.

2 Our middleware solutions

The lessons learned presented in this paper are based on
the following replication middleware implementations:

froihofer
Textfeld
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://dx.doi.org/10.1109/NCA.2007.21

DeDiSys object replication middleware: DeDiSys is a
replication middleware [23] for explicit runtime balancing
of data integrity against availability. It provides novel repli-
cation protocols such as the Primary-per-Partition Proto-
col [5] and Adaptive Voting [20] that allow temporarily
relaxing data integrity and replica consistency during de-
graded situations (node or link failures) in order to enhance
availability.

The DeDiSys replication middleware is targeted to dis-
tributed object systems and has been implemented upon
.NET, J2EE, and CORBA.

Axis2-based service replication middleware: We have
also implemented a primary-backup replication middle-
ware [24] for Web services built upon the Java-based Axis2
SOAP engine [2]. The middleware is implemented as Axis2
module. Axis modules allow to extend the functionality of
Axis in a flexible way. For instance, WS-Addressing [10],
WS-Security [27], WS-ReliableMessaging [27] have also
been implemented on top of Axis using the module con-
cept [2]. Performance evaluations [24] of the middleware
show the relatively low overhead of Web services replica-
tion if the number of replicas is small.

3 Lessons learned

In this section we present the main lessons learned dur-
ing design and implementation of the middleware solutions
presented in section 2.

3.1 Architectural commonalities

Although one of the main goals of service oriented archi-
tectures is inter-enterprise integration, replication as it is re-
quired and used in critical settings such as air traffic control
is an intra-enterprise concern1. That is, replication is not
applied across organizational boundaries. Thus, replicas of
a certain service can reside in a homogenous environment
and replication middleware can be optimized for a certain
kind of Web services technology, e.g. our replication mid-
dleware presented in [24] is targeted to Axis2 Web services.
Therefore, today’s replication frameworks for Web services
can reuse many of the concepts of traditional (homogenous)
replication frameworks used in distributed object systems or
database systems as we have argued in previous work [21],
where we compared service and object replication mid-
dleware (e.g. FT-CORBA [19], WS-Replication [25], FT-
SOAP [17], [30]) on an architectural level. In our com-
parison we have shown that only subtle differences exist
which are primarily technology-dependent. Thus, we de-
rived a technology-independentarchitecture pattern for both

1This, however, does not imply a LAN setting, but rather refers to the
homogeneous administration and control.

service and object replication middleware. Our middleware
implementations discussed in section 2 closely follow this
pattern.

Lesson 1: Both object and service replication middleware
require the following major infrastructure components: A
Multicast Service for reliable, ordered dissemination of op-
erations. A Monitoring Service for detection of faults in
the system (e.g. crash of a service). A Replication Man-
ager, mainly for maintenance of object/service groups and
overall configuration of the replication logic. A Replication
Protocol unit for providing the actual replication logic (e.g.
primary-backup protocol). An Invocation Service providing
the invocation logic (interception of client invocations, con-
veyance of the transaction context, etc.) An optional Trans-
action Service for supporting transactions on replicated en-
tities.

3.2 Key component: group communica-
tion toolkit

Monitoring of the replicated entities and detection of
faults is required both in distributed object and service ori-
ented systems since replication middleware needs to take
appropriate actions in case of a fault. For instance, in case of
primary-backup replication, a backup has to be promoted to
a new primary replica if the original primary crashes. How-
ever, before such steps are taken, agreement on the mem-
bership of nodes in the system has to be achieved. That
is, system entities need to agree on which nodes are opera-
tional and which are not. As Birman points out, “in many
ways, agreement on membership is thus at the center of
the universe, at least insofar high assurance computing is
concerned” [7]. A group membership service (GMS) keeps
track of membership changes of dynamic groups, caused by
voluntary (join or leave) changes or failures (crashed or un-
reachable nodes). A view contains the current members of
a group. Group members are notified about group member-
ship changes by the GMS. A primary component member-
ship service ensures total order of views, while concurrent
views may exist in partitionable membership services.

Reliable multicast primitives are needed as well—both
in object and service replication middleware, e.g. for prop-
agation of updates from the primary to the backup replicas
in case of primary-backup replication. Since group mem-
bership changes have to be taken into account when a mul-
ticast is sent to a group, reliable multicast services are typ-
ically combined with a group membership service and re-
ferred as view-oriented group communication systems [9].
Group communication systems provide multicast primitives
to (object, process, service) groups with configurable deliv-
ery and ordering guarantees.

Examples for state-of-the-art group communication

toolkits are Spread [1], JGroups [15], or the newly proposed
SOAP-based WS-Multicast toolkit [25], which is specifi-
cally targeted to service oriented systems. The only note-
worthy difference compared to traditional group communi-
cation toolkits is that WS-Multicast exposes its operations
via a WSDL (Web Services Description Language, [10]) in-
terface. However, this could also be realized for the other
toolkits. We have used Spread in all our middleware frame-
works. For the Axis2 replication middleware, SOAP mes-
sages are serialized into a byte stream before they are prop-
agated by Spread.

Lesson 2: Of course, the use of group communication
toolkits is not mandatory for replication middleware. How-
ever, we strongly recommend their use since they signifi-
cantly reduce the implementation complexity. For instance,
active replication requires ordering of operations, which
can already be provided by a group communication toolkit.
Group communication primitives hide most of the (im-
plementation) complexity of primary-backup replication as
well: For instance, group communication allows to cope
with undesirable situations such as the crash of the primary
during a multicast.

Whether the replicated entity is a service or an object
does not impose any conceptual differences in this respect.

3.3 Invocation service

An invocation service provides the invocation logic used
for invocation of operations and provides specific guaran-
tees with respect to node or link failures. It further pro-
vides the possibility to intercept service/object invocations
and transmits additional data with an invocation, e.g. the
identifier of a transaction to associate a specific call with a
transaction. Both distributed object replication middleware
and service replication middleware exhibit such intercep-
tors:

.NET: The .NET version of the DeDiSys replication mid-
dleware uses the .NET remoting framework for injecting
interceptors at the client and server side of the invocation
chain. The advantage of this approach is that the infras-
tructure is readily provided by the .NET framework itself.
A disadvantage is that all the replicated objects must ex-
tend the MarshalByRefObject class, thereby limiting the de-
signer’s options for inheritance.

CORBA: The CORBA-based DeDiSys replication mid-
dleware [6] is based on JacORB [13] and uses CORBA
portable interceptors [19] to trigger the replication logic,
without the need for client modifications. CORBA invo-
cations can be intercepted both on the client and the server

side at different interception points. For instance, client-
side interceptors are used in DeDiSys to re-direct invoca-
tions to the primary replica.

J2EE: Our J2EE DeDiSys replication framework builds
upon the JBoss application server [14]. JBoss already in-
cludes an invocation service with the possibility to register
interceptors either server-wide or separately for each appli-
cation. We have defined custom interceptors for replication
purposes both in the client and server invocation chain.

Axis2: The SOAP engine Axis2 [2] allows the definition
of customizable message interceptors, so-called “handlers”.
The Axis flow is divided into phases, which are processed in
sequential order. A handler is associated with each phase,
i.e. first the handler of the TransportInPhase is called af-
terwards the handler of the DispatchPhase, etc. For repli-
cation purposes, we have defined the “replicationPhase”
and an associated “InFlowReplicationHandler”. Incoming
SOAP messages are cut out of the Axis IN-flow by the “In-
FlowReplicationHandler”, propagated to the other replicas
and injected in their IN-flow.

Lesson 3: All of the state-of-the-art technologies we have
used provide many options for interception of invocations
and allow custom-tailored extensions. This eases the im-
plementation of the invocation logic of a replication mid-
dleware and helps to achieve replication transparency.

3.4 Replica management and replication
protocol

Both in distributed object and service oriented systems,
some component is necessary which manages replicated
services/objects, including tasks such as storing the location
and role of replicas, maintaining service/object groups, gen-
eral configuration of the replication middleware such as the
replication style, etc. Typically, this component is called the
replication manager (e.g. in FT-SOAP [17], DeDiSys [23],
FT-CORBA [19]). The Web service replication compo-
nent of the WS-Replication framework [25] provides sim-
ilar functionality. Though the tasks of this component are
identical for service and object replication middleware, mi-
nor differences are caused by the different granularity (typ-
ically coarse-grained in case of services and usually fine-
grained in case of objects) and the number of the replicated
services/objects. For instance, a replication manager in ob-
ject replication middleware typically needs to maintain a
huge number of objects (e.g. millions) while the number
of services that need to be replicated is comparatively small.
This, for example, influences the choice of the data structure
for the replica location service which is part of the replica-
tion manager.

The actual replication protocol (i.e. triggering of update
propagation, recovery, reconciliation, etc.) is typically ei-
ther a separate component (e.g. in the DeDiSys replication
middleware) or embedded in the replication management
unit (e.g. in the CORBA-based Eternal system [18] or in
the WS-Replication middleware [25]). The advantage of a
separate replication protocol component is that a change of
the protocol (e.g. necessary due to system evolvement) is
easier to achieve.

.NET: Both the .NET replication manager and the replica-
tion protocol have been implemented from scratch using the
C# programming language, since distributed object replica-
tion in .NET environments is rather a novelty. The replica-
tion manager and protocols should be capable of handling
IMessage as invocation context because .NET Remoting
provides the invocation logic.

CORBA: The CORBA-based replication manager inter-
nally uses CORBA’s Portable Object Adapter (POA) for the
association of objects with object references. Replication
management and protocol interact with each other but are
encapsulated in separate components in order to ease exten-
sibility. More details can be found in [6].

J2EE: For the J2EE DeDiSys replication service, we
build upon the replication framework of ADAPT [29]. For
replication purposes, ADAPT provides an abstraction from
a specific application server by providing a so called Com-
ponentMonitor with events, e.g. afterCreate(), afterFind(),
call(). The ADAPT J2EE replication architecture consists
of two layers: the ADAPT replication framework and the
replication algorithm layer. That is, different replication
protocols can be plugged into the framework and can run
on top of it.

Axis2: The replication manager for our Axis2 replica-
tion middleware has been implemented from scratch. The
only subtle difference to distributed object replication man-
agers is that the number of entities (services vs. objects) it
maintains is typically smaller due to the coarse-grained na-
ture of services compared to rather small-grained objects.
The replication manager processes membership messages2

sent out by Spread and takes appropriate action if required.
The replication protocol component of the Axis2 replication
middleware is primarily responsible for update propagation
from the primary to the backups, in combination with the
group communication toolkit Spread.

2Four different membership messages are distinguished: join, leave,
disconnected, and network.

Lesson 4: While CORBA and J2EE (in combination with
ADAPT) provide some support for replication out of the
box, .NET and Axis2 require building the replication mid-
dleware and protocol from scratch. Our primary recom-
mendation is to separate replication management and repli-
cation protocol. That is, the replication management unit
should provide the basic mechanisms (e.g. location service
functionality) that can be used for a variety of replication
protocols while the protocol implements specific policies.
In this respect no differences between service oriented and
distributed object middleware arise.

3.5 Combining replication and transac-
tions

Transactions are a fault tolerance technique by them-
selves; specifically the atomicity and durability properties
of traditional ACID transactions are related to fault toler-
ance [26]. Atomicity denotes that either all or none of the
transaction’s operations are performed. Durability requires
that the committed effect of transactions is permanent, such
that the data are available after a failure or system restart.
However, since durability has its limitations (e.g. some
failures such as a disk crash are not recoverable), replica-
tion needs to be introduced in critical transactional systems.
Thus, transactions need to be performed on replicated ob-
jects or services.

.NET: With .NET 2.0, the System.Transactions library
was introduced that provides a native .NET implementation
of transactions. Transactions can be either lightweight (in-
side an application domain) or they might employ the Mi-
crosoft Distributed Transaction Coordinator (MSDTC). So
far we have not implemented transactional support in our
.NET replication middleware since transactions are not re-
quired for the control engineering products of our industrial
partner who uses the middleware.

CORBA: The CORBA-based DeDiSys transaction man-
ager adheres to the Java Transaction API (JTA) [28] but has
been implemented from scratch since network failures are
often not properly treated by off-the-shelf transaction man-
agers.

J2EE: The JBoss application server does not include a
transaction system with support for distributed transac-
tions in its current releases (4.x). Therefore, we have
used the separate JBoss transaction service (JBossTS,
http://labs.jboss.com/portal/jbosstm) with support for dis-
tributed transactions that can be manually integrated into
the application server. This transaction service was acquired
by JBoss from Arjuna, released as open source product and

will be the standard transaction service in future (5.x) re-
leases of the application server.

Axis2: The Web services coordination framework (WS–
Coordination [3]) provides a foundation layer for con-
sensus between Web services, where specific consensus
protocols can be built upon, e.g. distributed transac-
tions. Two particular specifications for Web service trans-
actions build upon the WS-Coordination framework: WS-
AtomicTransaction [3] for short running ACID transactions
and WS-BusinessActivity [3] for long running transactions
with weaker guarantees.

Apache Kandula [2] is an open-source implementation
of these specifications and is based on Axis. Unfortunately,
Kandula2, which is targeted to Axis2 is currently in a pre-
liminary stage. Thus, we have not yet tested it in combina-
tion with our replication middleware.

Lesson 5: While distributed object replication middle-
ware often supports transactions (e.g. DeDiSys middle-
ware [23]), support for transactions in replication middle-
ware for service oriented systems is rather in its infancy.
Up to our knowledge, only WS-Replication [25] has been
combined with transactional support. Although this yielded
promising results, there is clearly a need for further research
in this area, especially with different replication protocols
and other transaction models.

4 Related work

In previous work [21] we have compared state-of-the-art
object and service replication middleware on an architec-
tural level. However, in contrast to this paper, the previous
one does neither provide details on our own middleware im-
plementations with different technologies nor does it con-
tain lessons learned from our prototypes. Our Axis2-based
Web service replication middleware [24] did not even exist
at the time of writing of the previous paper.

Besides our own work, up to our knowledge, no com-
parison of object and service replication middleware ex-
ists in literature, neither conceptual work as our previous
paper [21] nor experience reports like this paper. Simi-
larities between these two worlds with respect to replica-
tion are mentioned in [25] but not described. Although ob-
ject replication middleware is well-established, middleware
comparisons are even hard to find within this area. One
noteworthy exception [12] discusses both early fault toler-
ant CORBA implementations and the FT-CORBA standard;
however, with a strong focus on the latter and no relation to
service oriented systems. Besides this excellent CORBA-
specific work, “related work” sections of replication mid-
dleware papers typically contain brief comparisons, which

however lack in-depth coverage. Moreover, many of the sci-
entific papers about replication in the traditional distributed
computing field focus on the algorithms and not on the mid-
dleware providing the replication protocols. Thus, the repli-
cation middleware is often not described at all or only rather
implicitly.

5 Conclusion

In this paper, we contributed with a discussion of our
experiences gained during the design and implementation
of object and service replication middleware based on
.NET, J2EE, CORBA, and Axis2. The main lessons learned
are the following:

Lesson 1: Service and object replication middleware
share many architectural commonalities and only subtle
technology-dependent differences.

Lesson 2: Group communication toolkits significantly
reduce implementation complexity for the software engi-
neer.

Lesson 3: State-of-the-art technologies provide many
options for interception of invocations and allow custom-
tailored extensions of the standard call flow. This eases
implementation of the invocation logic of a replication
middleware and helps to achieve replication transparency.

Lesson 4: Replication management and replication
protocol should be separated in order to ease extensibility
of the replication middleware.

Lesson 5: Combining replication with transactions is
a major challenge for service replication middleware.

Based on our experience, we believe future research
should be targeted to lesson 5, i.e. especially the appli-
cation of novel transaction models (such as long running
transactions) in service oriented systems with replicated
services requires attention.

Moreover, although state-of-the-art Web service replica-
tion middleware frameworks address many of today’s re-
quirements for replication in service oriented settings—
which is still not trivial—we believe systems of the future
such as ultra-large-scale systems [11] will require additional
research if replication in a “true” service oriented manner—
especially with respect to heterogeneity—is required. Ad-
ditional standardization efforts—similar to other horizon-
tal protocols such as WS-Coordination [3]—for replication
protocols, group membership services, group communica-
tion protocols, etc. are likely to be necessary for such set-
tings [22].

6 Acknowledgements

This work has been partially funded by the Euro-
pean Community under the FP6 IST project DeDiSys
(Dependable Distributed Systems, contract number 4152,
www.dedisys.org).

References

[1] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss
tolerant architecture and protocol for wide area group com-
munication. In Proc. Int. Conf. on Dependable Systems and
Networks, pages 327–336. IEEE CS, 2000.

[2] Apache. Axis2, http://ws.apache.org/axis2/.

[3] Arjuna, BEA, Hitachi, IBM, IONA, and Microsoft. Web
services transactions specifications, 2005. http://www-
128.ibm.com/developerworks/library/specification/ws-tx/.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Secur. Comput., 1(1):11–
33, 2004.

[5] S. Beyer, M. Bañuls, P. Galdámez, J. Osrael, and F. Muñoz.
Increasing availability in a replicated partitionable dis-
tributed object system. In Proceedings of the 4th Int. Symp.
on Parallel and Distributed Processing and Applications
(ISPA’06), volume 4330 of LNCS, pages 682–695. Springer,
2006.

[6] S. Beyer, F. Munoz-Escoi, and P. Galdamez. Corba replica-
tion support for fault-tolerance in a partitionable distributed
system. In Workshop Proc. 17th Int. Conf. on Database
and Expert Systems Applications, pages 406–412. IEEE CS,
2006.

[7] K. Birman. Reliable Distributed Systems. Springer, 2005.

[8] K. Birman. The untrustworthy web services revolution.
IEEE Computer, 39(2):98–100, 2006.

[9] G. Chockler, I. Keidar, and R. Vitenberg. Group communica-
tion specifications: a comprehensive study. ACM Computing
Surveys, 33(4):427–469, 2001.

[10] World Wide Web Consortium. http://www.w3.org.

[11] P. Feiler, R. Gabriel, J. Goodenough, R. Linger, T. Longstaff,
R. Kazman, M. Klein, L. Northrop, D. Schmidt, K. Sullivan,
and K. Wallnau. Ultra-Large-Scale Systems. Software Engi-
neering Institute Carnegie Mellon, 2006.

[12] P. Felber and P. Narasimhan. Experiences, strategies, and
challenges in building fault-tolerant CORBA systems. IEEE
Trans. Comput., 53(5):497–511, 2004.

[13] JacORB. http://www.jacorb.org.

[14] JBoss. JBoss application server,
http://www.jboss.org/products/jbossas.

[15] JGroups. A toolkit for reliable multicast communication.
http://www.jgroups.org.

[16] J.-C. Laprie. Resilience for the scalability of dependability.
In Proc. 4th Int. Symp. on Network Computing and Applica-
tions, pages 5–6. IEEE CS, 2005.

[17] D. Liang, C.-L. Fang, C. Chen, and F. Lin. Fault tolerant
web service. In Proc. 10th Asia-Pacific Software Engineer-
ing Conf., pages 310–319. IEEE CS, 2003.

[18] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Con-
sistent object replication in the eternal system. Theor. Pract.
Object Syst., 4(2):81–92, 1998.

[19] Object Management Group (OMG). Common Object Re-
quest Broker Architecture: Core Specification, v3.0.3, 2004.

[20] J. Osrael, L. Froihofer, M. Gladt, and K. M. Goeschka.
Adaptive voting for balancing data integrity with availabil-
ity. In On the Move to Meaningful Internet Systems 2006:
Confederated Int. Workshops Proceedings, volume 4278 of
LNCS, pages 1510–1519. Springer, 2006.

[21] J. Osrael, L. Froihofer, and K.M. Goeschka. What ser-
vice replication middleware can learn from object replica-
tion middleware. In Proc. 1st Workshop on Middleware for
Service Oriented Computing in conjunction with the Middle-
ware Conf. 2006, pages 18–23. ACM Press, 2006.

[22] J. Osrael, L. Froihofer, and K.M. Goeschka. On the need for
dependability research on service oriented systems. In Pro-
ceedings of the 37th Int. Conference on Dependable Systems
and Networks. IEEE CS, 2007.

[23] J. Osrael, L. Froihofer, K.M. Goeschka, S. Beyer,
P. Galdámez, and F. Muñoz. A system architecture for en-
hanced availability of tightly coupled distributed systems. In
Proc. 1st Int. Conf. on Availability, Reliability and Security,
pages 400–407. IEEE CS, 2006.

[24] J. Osrael, L. Froihofer, M. Weghofer, and K.M. Goeschka.
Axis2-based replication middleware for Web services. In
Proceedings of the Int. Conference on Web Services. IEEE
CS, 2007.

[25] J. Salas, F. Perez-Sorrosal, M. Patiño-Martı́nez, and
R. Jiménez-Peris. WS-Replication: a framework for highly
available web services. In Proc. 15th Int. Conf. on World
Wide Web, pages 357–366. ACM Press, 2006.

[26] A. Schiper. Group communication: From practice to the-
ory. In SOFSEM 2006: Theory and Practice of Computer
Science, volume 3831 of LNCS, pages 117–136. Springer,
2006.

[27] OASIS standards. http://www.oasis-open.org/specs/.

[28] Sun Microsystems. Java Transaction
API,http://jcp.org/en/jsr/detail?id=907.

[29] H. Wu, B. Kemme, and V. Maverick. Eager Replication for
Stateful J2EE Servers. In Proc. OTM Federated Conf., vol-
ume 3291 of LNCS, pages 1376–1394. Springer, 2004.

[30] X. Ye and Y. Shen. A middleware for replicated web ser-
vices. In Proc. 3rd Int. Conf. on Web Services, pages 631–
638. IEEE CS, 2005.

