©2007 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://
dx.doi.org/10.1109/ICWS.2007.57

Axis2-based Replication Middleware for Web Services

Johannes Osrael!, Lorenz Froihofer!, Martin Weghofer?, and Karl M. Goeschka'

Vienna University of Technology, Argentinierstrasse 8/184-1, 1040 Vienna, Austria,
{johannes.osrael|lorenz.froihofer|karl.goeschka} @tuwien.ac.at

2University of Applied Sciences Technikum Wien, Hochstidtplatz 5, 1200 Vienna, Austria, weghofer @ technikum-wien.at

Abstract

Dependability is one of the most important challenges
for service-oriented architectures if their success shall con-
tinue in critical settings such as air traffic control or finance
and banking. Replication of services and the underlying re-
sources is one of the primary fault tolerance techniques for
achieving dependability. While replication is well known
in traditional fields (e.g. databases), it is rather in its in-
fancy in service-oriented environments. Thus, in order to
reduce the dependability gap we are currently facing in
service-oriented environments, we contribute with a repli-
cation middleware for Web services which is built upon
the Java-based Axis2 SOAP engine and provides a variant
of primary-backup replication. Performance evaluations
of our middleware implementation show the relatively low
overhead of replication if the number of replicas is small.

1. Introduction

Replication is one of the primary means to achieve de-
pendability [4], in particular high reliability and availabil-
ity. As the success of service oriented architectures — and
in particular Web services — continues and the service ori-
ented approach is applied in high dependability demand-
ing areas such as air traffic control or finance and banking,
(Web) service replication is gaining importance as well.

Service oriented architectures can often be separated into
a data layer (e.g. database back end) and a service layer
(e.g. Web service front end) on top of it. In such a case,
replication can be applied on the data layer and/or on the
service layer [24]. On the data layer, traditional database
replication techniques as provided by both commercial and
open source database management systems (such as Oracle,

IBM DB2, Microsoft SQL Server, PostgreSQL, or MySQL)
can be applied. Of course, only replicating the underlying
data store is not sufficient — the Web service front end pro-
viding the business logic needs to be replicated as well. If
the state of the Web service front end is completely encap-
sulated! in the underlying data store, “replication” of the
front end becomes rather trivial since replica synchroniza-
tion can be achieved via the replication mechanism of the
data store and no coordination between the replicated front
ends is required. If, however, the Web service front end
contains some transient state or persists state in a data store
not capable of replication, state synchronization needs to be
performed on the service level.

Although obviously needed, only few replication mid-
dleware solutions for Web services have been presented in
the past. Only some of them can be considered fault tol-
erant and state-of-the-art in terms of the used Web services
technology, e.g. WS-Replication [29], which provides ac-
tive replication [30]. Unfortunately, other solutions are not
fully fault tolerant (e.g. FAWS [17]) or are already depre-
cated since they rely on outdated technology (e.g. FT-SOAP
[20]). Hence, more research is required in this field.

Consequently, in this paper we contribute by presenting
a [10] replication middleware for Web services built upon
the Java-based Axis2 SOAP engine [28, 3].

The remainder of this paper is structured as follows: Our
system model is presented in section 2. Afterwards, the sys-
tem architecture is discussed in section 3. Results of the
performance evaluation of the middleware solution are pre-
sented in section 4. Related work is discussed in section 5
before we draw our conclusion in section 6.

I'This kind of services is also referred as “service that acts upon a state-
ful resource” [15]

froihofer
Textfeld
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://dx.doi.org/10.1109/ICWS.2007.57

2. System model

Our replication middleware is primarily targeted to repli-
cation of stateful Web services, since replicating stateless
services is comparatively easy (w.r.t. stateful services) since
no state needs to be synchronized. For stateless services,
in principle, merely several instances need to be deployed
on different hosts in the distributed system. Nevertheless,
our middleware is beneficial for replication of stateless ser-
vices as well, since it provides the abstraction of a logical
service group (comprising several replicas), which reduces
complexity for the application programmer.

2.1 Replication model

Our replication middleware has been designed for a vari-
ant of primary-backup replication, however, our modular
design allows to plug-in other replication protocols (e.g. ac-
tive replication [30] or coordinator-cohort replication [9])
with modest efforts.

In the original primary-backup approach [10], only one
of the replicas — the primary — processes the clients’ re-
quests and forwards the updates to the other replicas — the
backups. Thus, this technique is also called passive replica-
tion.

A variation of the original approach, which we have im-
plemented in our middleware, is to forward the client in-
vocations to the backups, which have to process them as
well. Thus, the replica behavior must be deterministic in
this variant. That is, sources for non-determinism such as
non-deterministic functions (e.g., random(), time()) or the
scheduling of concurrently executing conflicting transac-
tions need to be avoided, e.g. by the use of a deterministic
scheduler and by removing all non-deterministic function
calls. Our primary-backup variant is similar to active repli-
cation [30] in the sense that all replicas are “active” and
process the requests, but requires weaker multicast primi-
tives (FIFO ordering instead of total order), since all client
requests are forwarded to the primary replica first.

In primary-backup replication (including our variant),
updates can be propagated either in a synchronous (eager,
blocking) or asynchronous (lazy, non-blocking) fashion to
the backup replicas. In the first variant, all replicas are
updated before the reply is sent back to the client. Thus,
replicas are always consistent and read operations can be
performed on local copies. In the latter variant, the reply
is sent to the client immediately after the primary has pro-
cessed the request. Updates are propagated afterwards. This
approach yields to better response time but replicas are not
always consistent. Thus, read operations on backup copies
might return stale values.

In a primary-backup approach, at least one replica (the
primary) exists which has all updates. Moreover, FIFO or-

dering of operations is easy to achieve since all operations
are directed to the primary. However, the primary replica
might become overloaded. While a crash of a backup
replica does not require specific actions by the replication
protocol, a crash of the primary replica requires reconfigu-
ration since a new primary needs to be elected.

Primary-backup replication can either be performed on
the data level (i.e. via the underlying database) or on the
service level of a stateful service. For a discussion on repli-
cation options in service-oriented systems see [24]. Our
replication middleware performs replication on the service
level and thus can be also used for services with transient
state or data stores that are not capable of replication.

2.2 Failure model

We consider both node and link failures (partitioning),
i.e. the crash failure [13] model is assumed for nodes and
links may fail by losing but not duplicating or corrupting
messages.

A group membership service is assumed in our system,
which provides a single view of the nodes within a partition,
i.e. it is used to detect node and link failures. Furthermore,
we assume the presence of a group communication service
which provides multicast to groups with configurable deliv-
ery and ordering guarantees.

2.3 Replication and service-orientation

Although one of the main goals of service-oriented ar-
chitectures is inter-enterprise integration, replication as it is
required and used in critical settings such as air traffic con-
trol is an intra-enterprise concern. That is, replication is
not applied across organizational boundaries. Thus, repli-
cas of a certain service can reside in a homogenous envi-
ronment and replication middleware can be optimized for a
certain kind of Web services technology, e.g., our replica-
tion middleware is targeted to Axis2 Web services. There-
fore, today’s replication frameworks for Web services can
reuse many of the concepts of traditional (homogenous)
replication frameworks used in distributed object systems
or database systems as we have argued in previous work
[25]. Some differences compared to traditional replication
systems are caused by the coarse-grained nature of services,
which allows certain optimizations (e.g., internal data struc-
tures) in the service replication middleware. Scalability, an-
other major challenge addressed by service-oriented archi-
tectures, can be me mastered by looser forms of replica-
tion coupling. For instance, in case of our primary-backup
scheme, loose replication coupling can be achieved by asyn-
chronous update propagation.

While state-of-the-art Web service replication middle-
ware frameworks (including our solution) address today’s

User-

]

I

WS Client s

/

WS Replication System ~

Invocation Service

] ™,

Application Web Service
(Business Logic)

Replication
Manager

Group communication

system
J /

Replication Protocol

Storage

Figure 1. Middleware architecture

requirements for replication in service-oriented settings —
which is still not trivial — we believe systems of the fu-
ture such as ultra-large-scale systems [14] will require ad-
ditional research if replication in a “true” service-oriented
manner — especially with respect to heterogeneity — is
required. Additional standardization efforts — similar to
other horizontal protocols such as WS-Coordination [16] —
for replication protocols, group membership services, group
communication protocols, etc. are likely to be necessary for
such settings [26].

3. System architecture

Our middleware consists of four main components as de-
picted in figure 1: an invocation service, a replication man-
ager, a replication protocol, and the group communication
toolkit Spread [2].

These middleware infrastructure components are imple-
mented in a distributed fashion in order to avoid single
points of failure and to provide fault tolerance for the mid-
dleware itself. That is, these components reside on every
node in the system and their state (e.g. of the replication
manager) is kept consistent.

Our replication middleware is built on the Java-based
Apache Axis2 SOAP engine [28, 3] and realized as a mod-
ule. Axis modules allow to extend the functionality of Axis
in a flexible way. For instance, WS-Addressing [31], WS-
Security [23], WS-ReliableMessaging [22] have also been
implemented on top of Axis using the module concept.

The entry point to the replication middleware is the in-
vocation service, which intercepts SOAP invocations of the
client and triggers the replication logic.

3.1. Invocation service

Axis2 allows the definition of customizable message in-
terceptors, so-called “handlers”. Incoming SOAP messages
are cut out of the Axis IN-flow, propagated to the other
replicas and injected in their IN-flow. Each replica pro-
cesses the SOAP invocation but a reply to the client is only
sent by one of the replicas — the replica where the client
invocation has been initiated.

The Axis flow is divided into phases, which are pro-
cessed in sequential order. A handler is associated with
each phase, i.e. first the handler of the TransportInPhase
is called, afterwards the handler of the DispatchPhase, etc.
The sequence of the phases is defined in the axis2.xml file.
For replication purposes we have defined the phase “repli-
cationPhase” (after the PostDispatchPhase) and an associ-
ated “InFlowReplicationHandler”. The handler names and
the associated handler classes and phases are defined in the
module.xml file of the ReplicationModule.

Figure 2 shows the message flow in detail, assuming the
client invocation has been initiated at the primary and syn-
chronous update propagation is used. If the client invoca-
tion is initiated at a backup, it is redirected to the primary.

First, the message arrives at the HTTP-Transport inter-
face (1) of Axis and is handed over to the handler chain.
A handler receives the MessageContext via the invoke

SOAP Message
4

1.
—AXis2 Q) ~

Transport Listener

N
(interceptors)
] ®

Business Logic

PRIMARY

~Spread
@ _ Replication
o K Replicated Listener
\ SOAP Message @)

InFlow InFlow
Replication Replication
Handler Handler

Message Message
Receiver Receiver
Web Service Web Service

—Axis2 N
®)

™ Transport Listener

N
(interceptors)

Message Injection

H

Business Logic

BACKUP

Figure 2. Replication handler and message injection

method. A MessageContext contains the Axis configura-
tion, service and service group configuration, session in-
formation and the SOAP message. Since it is not possi-
ble to serialize the MessageContext in Axis2 and propa-
gate it to other replicas, only the SOAP envelope and the
To-endpoint are extracted by the InFlowReplicationHandler
(2). The SOAP envelope is extended with a MessageHeader
containing the Messageld and the host name of the primary.
Afterwards, the SOAP envelope and the endpoint are stored
in a ReplicationObject and multicast (3) to all replicas (in-
cluding the primary) using the group communication toolkit
Spread (see section 3.2 for group communication and sec-
tion 3.4 for update propagation details). Sending the mes-
sage to the primary as well is a convenient way to ensure
consistency, since Spread delivers the message either to all
or none of the group members. Otherwise state inconsisten-
cies could occur, for instance if some replicas receive and
process the SOAP message while others do not. The In-
FlowReplicationHandler at the primary is blocked till the
SOAP message re-appears at the ReplicationHandler. On
the receiver sites, the ReplicationObject is received by the
ReplicationListener (4) and injected (5) in the Axis IN-flow
using LocalTransportSender. Again, the message passes
through the handler stack till it reaches the InFlowRepli-

cationHandler. This handler checks if a SOAP header of
the primary is contained in the SOAP envelope. If this is
the case, the middleware knows that the received message
is a replicated message and distinguishes two cases. If the
receiver is the primary, the blocking of the original SOAP
message is released, the original message is processed and
the result is returned to the client. The replicated message
is discarded. If the receiver is a backup, the replicated mes-
sage is processed but no response is sent to the client.

3.2. Group communication toolkit

Reliable multicast primitives are required for propaga-
tion of messages from the primary to the backup replicas.
Reliable multicast, however, requires concise information
about which nodes are operational and which are not. Be-
sides for reliable multicast, monitoring of the replicated
Web services is also required to take appropriate action in
case of a fault. For instance, a backup has to be promoted
to the new primary if the original primary crashes.

Thus, agreement on the membership of nodes in the sys-
tem has to be achieved. A group membership service keeps
track of membership changes of dynamic groups, caused by
voluntary (join or leave) changes or failures (crashed or un-

primary backup
ReplicationProtocol SpreadConnection SpreadConnection InvocationService Web Service
| | | | |
I multicast(ReplicationObject) ! 1 I I
I | L L A

regularMessageReceived

> unwrap

invoke business method

Figure 3. Update propagation

reachable nodes). A view contains the current members of
a group. Group members are notified about group member-
ship changes by the group membership service.

Since group membership changes have to be taken into
account when a multicast is sent to a group, reliable multi-
cast services are typically combined with a group member-
ship service and referred as view-oriented group commu-
nication systems [12]. Group communication systems pro-
vide multicast primitives to (object, process, service) groups
with configurable delivery and ordering guarantees.

Group communication systems have been widely used
in the past as the basis for replication. For instance,
group communication toolkits based on the virtual syn-
chrony model [7, 8] developed at Cornell university by Bir-
man’s group “run the New York and Swiss stock exchange
systems, the French air traffic control system, and the US
Navy’s Aegis-class warship” [6].

Since these toolkits hide much of the complexity for the
programmer, we have chosen the Spread [2] toolkit for our
replication middleware.

3.3. Replication manager

The purpose of the replication manager is to keep track
of the location and roles of replicas, i.e. to manage the ser-
vice groups. Thus, the replication manager processes mem-
bership messages® sent out by Spread and takes appropri-
ate action if required. A membership message contains —
among others — the members of the group. Since this list
is in the same order on all nodes, a simple policy for deter-
mining the primary is to select the first node entry as the pri-
mary. In case of network partitions (indicated by a Caused-

Four different membership messages are distinguished: join, leave,
disconnected, and network.

ByNetwork message), no new primary is selected and only
the partition with the original primary can continue.

State synchronization Besides replication of SOAP in-
vocations, the replication middleware also needs to provide
a mechanism for state synchronization if new replicas of a
service shall be added to the system or a crashed replica re-
covers. One way would be to store all SOAP invocations
in a reliable data store and replay them once a new ser-
vice replica shall be synchronized with the existing repli-
cas. However, this can be quite time-consuming, especially
if the number of SOAP messages is large. Thus, our replica-
tion manager foresees a state transfer mechanism. Services
that shall be replicated must implement the StateTransfer
interface which contains methods for getting and setting the
state.

3.4. Replication protocol

The replication protocol realizes update propagation
from the primary replica to the backup replicas. Update
propagation is performed via the multicast primitives of the
Spread group communication toolkit. We have defined a
data structure called ReplicationObject which is a wrapper
for the actual SOAP payload and contains some additional
meta data such as the initiator of the message, a message
number, etc. This ReplicationObject is serialized into a byte
array and propagated via Spread.

Figure 3 schematically depicts the update propagation
process (some implementation details are omitted).

4. Performance evaluation

We have evaluated the performance of our replication
framework using a simple user account management Web

Client

(Primary) (Backup) (Backup) (Backup)

(Backup) (Backup) (Backup) (Backup)

Figure 4. Test infrastructure

service. The Web service provides four methods: login(),
createUser(), changeUser(), and deleteUser(). The first
method is read-only while the other methods have write se-
mantics. The state of our Web services is stored in an xml
file.

The Web service is replicated at up to eight nodes
with the following characteristics: Fujitsu-Siemens Esp-
rimo P5915 PCs, Intel Core 2 Duo E6600 processors, 2GB
RAM, Windows XP Professional. The client resides on
a laptop computer HP nx6110, Intel PentiumM 1,73GHz,
2GB RAM, Windows XP Professional. The Java Run-
time 1.5.0_10, Axis2 1.1 and the HTTP server integrated
in Axis are used on all nodes. The measurements have
been performed in a 100Mbit local area network using three
100Mbit switches (Netgear Fast Ethernet Switch FS105
5Port). Figure 4 depicts the test infrastructure:

We measured the performance of our replication mid-
dleware for 1 to 8 nodes (i.e. with up to 7 backups).
Four independent iterations of the following sequence have
been performed: 400 x createUser(), 400 x login(), 400 x
changeUser(), 400 x deleteUser(). Initially, the state of the
Web service (i.e. the xml file) contained information about
203 users. Figure 5 shows the median of the duration for
400 invocations of each of the write methods, initiated at
one of the backup replicas. The overhead of a replicated
system compared to a non-replicated system (1 node) is
(1) relatively small in a LAN setting and (ii) remains rel-
atively constant for a small number of nodes. This result
is in line with the performance measurements presented by
Amir et al. [1] for the Spread toolkit. The scalability of our
middleware primarily depends on the scalability of Spread,
i.e. Spread’s algorithms for group membership manage-
ment and reliable multicast.

The performance of the login() operation is independent
of the number of replicas, since synchronous update propa-
gation is used by our replication protocol and thus read op-

16

14,/\/\/4\--’\/

12 /
10 4
——create

—change
——delete

seconds
(o)

Figure 5. Update propagation: client invoked
backup

erations can be performed at any replica. 400 login() calls
require approximately 7.5 seconds.

5. Related work

Few middleware solutions have been proposed for
service-oriented systems:

Primary-backup replication of Web services is offered
by the FT-SOAP (Fault-Tolerant SOAP) middleware [20].
While our replication middleware builds upon Axis2, FI-
SOAP has been integrated with the predecessor Axisl. Due
to a major redesign of Axis from version 1 to version 2,
porting FT-SOAP to Axis2 would require significant ef-
fort. Moreover, many of the Web services standards have
changed since the introduction of FT-SOAP in 2003.

FAWS [17] provides primary-backup replication as well
but is not fault tolerant since the middleware components
are not replicated.

A different failure model than ours—namely byzantine
[19] behavior—is addressed by Thema [21]. Thema is
based on the Castro-Liskov Practical Byzantine Fault Tol-
erance state machine replication protocol [11].

The WS-Replication [29] middleware offers transparent
active replication, also based on Axisl. The major com-
ponents in WS-Replication are a Web service replication
component and a reliable multicast component. The for-
mer component enables active replication of Web services
while the latter — called WS-Multicast — provides SOAP-
based group communication. Moreover, WS-Multicast per-
forms failure detection (which is required for group com-
munication) by a SOAP-based ping mechanism. WS-
Multicast can also be used independently from the overall
WS-Replication framework for reliable multicast in a Web
service environment. The SOAP group communication sup-

port has been built on the JGroups [18] toolkit. Currently,
WS-Multicast is not available on an open-source basis, thus,
we used the Spread group communication toolkit in our
framework. Ye’s and Shen’s framework [32] also offers
active replication based on group communication. Besides
providing a different replication protocol compared to these
frameworks, our solution is different to these approaches
since it can be easily adapted for a variety of other protocols
(e.g. coordinator-cohort) since replication management and
protocol have been clearly separated in our framework.

ADAPT [5] is a J2EE replication framework integrated
into the JBoss application server that allows to plug-in repli-
cation protocols. Besides replication of Enterprise Jav-
aBeans it supports replication of Axisl Web services as
well. The Web services might contain session state but
services that invoke other Enterprise JavaBeans or call a
database are not supported.

As we have argued based on a comparison on an archi-
tectural level in [25] and discussed in an experience report
[27], Web service replication middleware shares many com-
monalities with distributed object replication middleware.

6. Conclusion and future work

We have presented a primary-backup replication mid-
dleware for Web services built upon the Java-based Axis2
SOAP engine. The middleware has been implemented as
an Axis2 module and constitutes four major architectural
units:

e A Replication Manager, mainly for management of
service groups and overall configuration of the repli-
cation logic.

e A Replication Protocol unit, primarily realizing update
propagation.

e An Invocation Service for interception of client calls
and triggering of the replication logic.

e The group communication toolkit Spread for reliable
multicast to groups and membership monitoring.

Performance evaluations of our middleware implemen-
tation in a LAN setting show the relatively low overhead
of replication if the number of replicas is small. While the
middleware overhead for replication remains the same in a
wide area setting, total response time from the client point
of view will be higher due to increased network delays.
If the performance overhead is not acceptable and replica
consistency can be slightly weakened, asynchronous update
propagation can be used instead of the synchronous variant
chosen in our experiment.

As future work, we plan to implement other replication
protocols such as the original primary-backup approach us-
ing state transfer for update propagation, active replication,
and coordinator-cohort replication. Moreover, transactional
support and a security concept shall be integrated.

7. Acknowledgements

This work has been partially funded by the European Com-
munity under the Framework Programme 6 IST project
DeDiSys (Dependable Distributed Systems, contract num-
ber 004152, http://www.dedisys.org).

References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
J. Stanton. The spread toolkit: Architecture and per-
formance. Technical report, Johns Hopkins Univer-
sity, 2004. http://www.cnds.jhu.edu/pub/papers/cnds-
2004-1.pdf.

[2] Y. Amir, C. Danilov, and J. Stanton. A low latency,
loss tolerant architecture and protocol for wide area
group communication. In Proc. Int. Conf. on Depend-
able Systems and Networks, pages 327-336.IEEE CS,
2000.

[3] Apache. Axis2, http://ws.apache.org/axis2/.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans.
Dependable Secur. Comput., 1(1):11-33, 2004.

[5] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin,
J. Vuckovic, and H. Wu. A framework for prototyp-
ing J2EE replication algorithms. In On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, volume 3291 of LNCS, pages 1413—-1426.
Springer, 2004.

[6] K. Birman. Can web services scale up? IEEE Com-
puter, 38(10):107-110, 2005.

[7] K.Birman and T. Joseph. Exploiting virtual synchrony
in distributed systems. In Proc. 11th ACM Sympo-
sium on Operating systems principles, pages 123—138.
ACM Press, 1987.

[8] K. Birman and T. Joseph. Reliable communication in
the presence of failures. ACM Trans. Comput. Syst.,
5(1):47-76, 1987.

[9] K. Birman, T. Joseph, T. Raeuchle, and A. El Ab-
badi. Implementing fault-tolerant distributed objects.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

IEEE Trans. on Software Engineering, 11(6):502—
508, 1985.

N. Budhiraja, K. Marzullo, F.B. Schneider, and
S. Toueg. The primary-backup approach. In S.J. Mul-
lender, editor, Distributed systems, chapter 8. ACM
Press, Addison-Wesley, 2nd edition.

M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proc. of the 3rd Symp. on Operating
Systems Design and Implementation, pages 173-186.
USENIX Association, 1999.

G. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: a comprehensive study.
ACM Comp. Surveys, 33(4):427-469,2001.

F. Cristian. Understanding fault-tolerant distributed
systems. Commun. ACM, 34(2), 1991.

P. Feiler, R. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, L. Northrop,
D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-
Large-Scale Systems. Software Engineering Institute
Carnegie Mellon, 2006.

L. Foster, J. Frey, S. Tuecke, K. Czajkowski, D. Fergu-
son, F. Leymann, M. Nally, I. Sedukhin, D. Snelling,
T. Storey, W. Vambenepe, and S. Weerawarana. Mod-
eling stateful resources with web services, 2004.

IBM et al Web services co-
ordination, 2005. http://www-
128.ibm.com/developerworks/library/specification/ws-

tx/.

D. Jayasinghe. FAWS for SOAP-
based Web services, 2005. http://www-
128.ibm.com/developerworks/webservices/library/
ws-faws/.

JGroups. JGroups: A toolkit for reliable multicast
communication. http://www.jgroups.org.

L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382-401, 1982.

D. Liang, C.-L. Fang, C. Chen, and F. Lin. Fault tol-
erant web service. In Proc. 10th Asia-Pacific Software
Engineering Conf., pages 310-319. IEEE CS, 2003.

M.G. Merideth, A. Iyengar, T. Mikalsen, S. Tai,
I. Rouvellou, and P. Narasimhan. Thema: Byzantine-
fault-tolerant middleware for web-service applica-
tions. In Proc. 24th Symp. on Reliable Distributed
Systems, pages 131-142. IEEE CS, 2005.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

OASIS. WS Reliability 1.1, 2004. http://docs.oasis-
open.org/wsrm/ws-reliability/v1.1/wsrm-
ws_reliability-1.1-spec-os.pdf.

OASIS. Web Services Security - SOAP Mes-
sage Security 1.1, 2006. http://www.oasis-
open.org/committees/download.php/16790/wss-
v1.1-spec-0s-SOAPMessageSecurity.pdf.

J. Osrael, L. Froihofer, and K. M. Goeschka. Software
Engineering of Fault Tolerant Systems, chapter Repli-
cation in Service-Oriented Systems. World Scientific
Publishing, 2007.

J. Osrael, L. Froihofer, and K.M. Goeschka. What
service replication middleware can learn from object
replication middleware. In Proc. of the 1st Work-
shop on Middleware for Service Oriented Computing
in conjunction with the ACM/IFIP/USENIX Middle-
ware Conf. 2006, pages 18-23. ACM Press, 2006.

J. Osrael, L. Froihofer, and K.M. Goeschka. On the
need for dependability research on service oriented
systems. In Proceedings of the 37th Int. Conference on
Dependable Systems and Networks. IEEE CS, 2007.

Johannes Osrael, Lorenz Froihofer, and Karl M.
Goeschka. Experiences from building object and
service replication middleware. In Workshop Proc.
Int. Symposioum on Network Computing and Appli-
cations. IEEE CS, 2007.

S. Perera, C. Herath, J. Ekanayake, E. Chinthaka,
A. Ranabahu, D. Jayasinghe, S. Weerawarana, and
G. Daniels. Axis2, middleware for next generation
web services. In Proc. Int. Conf. on Web Services
(ICWS’06), pages 833—-840. IEEE CS, 2006.

J. Salas, F. Perez-Sorrosal, Marta Patifio-Martinez,
and R. Jiménez-Peris. WS-Replication: a frame-
work for highly available web services. In Proc. 15th
Int. Conf. on World Wide Web, pages 357-366. ACM
Press, 2006.

FEB. Schneider. Replication management using the
state-machine approach. In S.J. Mullender, editor,
Distributed Systems, chapter 2. ACM Press, Addison-
Wesley, 2nd edition.

W3C. Web Services Addressing 1.0 - Core,
2006. http://www.w3.0org/TR/2006/REC-ws-addr-
core-20060509/.

X. Ye and Y. Shen. A middleware for replicated web
services. In Proc. 3rd Int. Conf. on Web Services,
pages 631-638. IEEE CS, 2005.

