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Abstract

The prosperity and competitiveness of organizations and
societies in general largely depend on the degree of their
ability to react flexibly and pro-actively on a constantly
changing environment. As many new products and services
depend on information and communication software, the in-
ertness of today’s software systems turns them into an ob-
stacle rather than an enabler and results in dependability
degradation during the systems’ lifetime. Even more so, het-
erogeneity, scale, and dynamics open up what Laprie called
the “dependability gap”.

In this position paper, we identify two research direc-
tions to close the dependability gap: First, to improve the
integration of software systems with the business functions
they support. Second, adaptive and evolvable systems based
on the control loop approach. For both research directions,
we will show how and to what extent SOA provides support
today—and what is needed to foster the true potential of
SOA for dependable and agile software systems tomorrow.

1. Service Science

The prosperity and competitiveness of organizations and
societies in general largely depend on the degree of their
ability to react flexibly and pro-actively on a constantly
changing environment. As many new products and services
depend on information and communication software today,
we witness the trend towards Service-oriented computing
which is mainly driven by industry and welcomed by many
computer scientists. Service-Oriented Computing (SOC)
– often called Service-Oriented Architecture (SOA)—is a
computing paradigm that utilizes services as the basic con-
structs to support the development of rapid, low-cost and
easy composition of distributed applications even in hetero-
geneous environments.

This trend has further led to a proposal calledService
science, which suggests a tighter integration of disciplines
including management science, computer science, opera-
tions research, industrial engineering, business strategy, so-
cial and cognitive sciences, and legal sciences to develop the
skills required in a services-led economy. Service architects
who are capable of planning, designing, and rolling-out
business processes and their implementations as software
services, are required to have an in-depth knowledge on
human aspects, organizational aspects, business processes,
and computational and software aspects. Complex services
provide novel problems and pose new challenges for many
disciplines, which ultimately leads to the aim of a better in-
tegration of business needs with technological solutions.

One contribution of this paper consequently is to pro-
vide a conceptual framework for a better integration of busi-
ness needs and technology, which clearly identifies areas for
future SOA research to foster business integration in Sec-
tion 4. Before that, in the next section we describe current
dependability problems in order to motivate our approach
provided in Section 3. Then, in Section 3.3 we show what
SOA can do for dependable systems today—and where it
falls short.

2. Dependability

While computing is becoming a utility and software ser-
vices increasingly pervade our daily lives, the integration
of technology with business has to be complemented by
technical approaches that turn software systems into an en-
abler of business agility, while providing the necessary de-
pendability. Hence, dependability is no longer restricted to
critical applications, but rather becomes a cornerstone of
the information society. Dependability clearly is a holis-
tic concept: Contributing factors are not only technical, but
also social, cultural (corporate culture), psychological (per-
ceived dependability), managerial and economical. Foster-
ing learning is a key, and simplicity is generally an enabler
for dependability.



Among technical factors, software development meth-
ods, tools, and techniques contribute to dependability, as
defects in software products and services may lead to fail-
ure and also provide typical access for malicious attacks.
In addition, there is a wide variety of fault tolerance tech-
niques available, ranging from persistence provided by
databases, replication, transaction monitors to reliable mid-
dleware with explicit control of quality of service properties
and aspect orientation. Adaptiveness, self-properties, and
autonomous computing are envisaged in order to respond
to short-term changes of the system itself, the context, or
the users’ expectations.

Unfortunately, heterogeneous, large-scale, and dynamic
software systems that typically run continuously often tend
to become inert, brittle, and vulnerable after a while. The
key problem is, that precisely the emerging systems and ap-
plications are the ones that suffer most from a significant
decrease in dependability when compared to traditional crit-
ical systems, where dependability and security are fairly
well understood as complementary concepts and a variety
of proven methods and techniques is available today [2]. In
accordance with Laprie [8] we call this effect the depend-
ability gap, which is widened in front of us between de-
mand and supply of dependability, and we can see this trend
further fueled by an ever increasing cost pressure. This is
partly caused by some of the following reasons [12, 8]:

• Change of context and user needs: It is impossible
to reasonably predict all combinations of change dur-
ing design, implementation, deployment, and—most
importantly—during run-time.

• Imprecise (and sometimes even competing or con-
tradictory) requirements: Users are either inarticu-
late about their precise criteria for correctness, perfor-
mance, dependability, and other system qualities, or
different users impose competing or contradictory re-
quirements on the system, partially because of incon-
sistent needs.

• Interdependencies between systems and software arte-
facts, and emerging behaviour: The system may be too
complex to predict even its internal behaviours pre-
cisely. Complexity theory [9] clearly shows that the
overall properties of a complex software system are
largely determined by the internal structure and inter-
action of its parts and less by the function of its indi-
vidual constituents.

As a result, traditional systems experience permanent
dependability degradationthroughout their life-time. This
in turn requires continuous and highly responsive human
maintenance intervention and repetitive software develop-
ment processes. While this need for intervention is costly,
error-prone, and hence further impairs dependability, it

may, in some cases, even become prohibitively slow com-
pared to the system’s pace in normal operation.

Hence, our second contribution is to suggest a (poten-
tially nested) control loop approach that converges methods
from software engineering with methods from traditional
dependability research, as devised in the following section.

3. The control loop approach

Two complementary approaches address the problems of
dependability degradation and the dependability gap: Adap-
tive coupling and run-time software engineering.

3.1. Adaptive coupling

First, large and dynamic systems can benefit from short-
term adaptivity to react to observed, or act upon expected
(temporary) changes of the context/environment (e.g., re-
source variability or failure scenarios) or users’ needs (e.g.,
day/night setting). As this kind of adaptivity (also termed
software agility) should be provided without explicit user
intervention, it is also termed autonomous behavior or self-
properties, and often involves monitoring, diagnosis (anal-
ysis, interpretation), and reconfiguration (repair) [5].

One of the main reasons why many approaches fell short
in the past, lies in the major focus on the system’s com-
ponents (e.g., by focusing on recompilation, reconfigura-
tion, and redeployment of components), while complexity
theory [9] on the other hand clearly shows that the overall
properties of large and complex software system are largely
determined by the internal structure and interaction of its
parts and less by the function of its individual components.

Service oriented architectures (SOA) already address
this perception by putting a strong focus on structure com-
pletely separated from the implementation of individual
constituents. So far so good, but there is still an impor-
tant aspect missing: The internal structure of a system is
formed by relationships of differing strengths between con-
stituents. Components with tighter connections (or cou-
pling) cluster to sub-systems, while other components may
remain more loosely-coupled with each other or with clus-
tered sub-systems. Hence, a complex software system pro-
vides a mixture of tightly and loosely coupled parts. As
an important consequence, the overall system properties are
determined not only by the structure but also by the strength
of coupling of its relationships.

Thus the inner control loop has to adaptively control the
strength of coupling between the system’s constituents as
the most promising approach to influence/control its overall
dependability properties.

To provide the desirable degree of adaptivity, compet-
ing dependability and security properties of the overall sys-
tem have to be explicitly balanced according to the re-



spective situation (context, failure scenarios, current user
needs). This balancing should flexibly be performed as in-
teraction between infrastructure and application (or even the
end user) through the explicit control of adaptive coupling
mechanisms between software services, typically through
run-time selection and reconfiguration of dependability pro-
tocols, e.g., consistency of replication protocols.

3.2. Run-time software engineering

Second, as not all possible evolvements can be foreseen
for long-running software, long-term evolution has to be
supported to regulate the emerging behavior of large and
dynamic systems, again, with respect to the evolvement of
the requirements and user expectations, but also in response
to long-term changes in the context.

This will be performed by changing the system’s design
during run-time, which in turn requires run-time process-
able requirements and design-views in the form of con-
straints [4], models (“UML virtual machine”), or (partial)
architectural configurations. The ultimate idea here is to
move into run-time what previously could only be done by
modifying an application off-line during design-time.

These run-time accessible and processable requirements
can be stored in repositories or be accessed via reflection,
aspect-oriented programming, or protocols for meta-data
exchange. They can explicitly be manipulated and config-
ured, which allows such a system to balance or trade certain
properties against each other or against user needs during
run-time.

Clearly, this requires middleware services to support ac-
cess and manipulation of requirements and negotiation of
properties and needs. The vision here is a convergence
of software development tools with middleware (includ-
ing traditional dependability, fault tolerance, and adaptiv-
ity concepts), to provide for run-time software develop-
ment tools to compensate for dependability degradation by
re-engineering running software. Yet, in turn, this intro-
duces new challenges for dependability engineering, requir-
ing methods for run-time verification and testing, for exam-
ple.

Figure 1 shows the outer control loop: The dependability
properties of the system are measured (“software sensors”)
and compared to the users’ current needs. During a nego-
tiation process, it is decided which properties are traded
against each other according to the current system state,
context, and users’ needs. Finally, the system is changed
via adjustment of run-time processable requirements, in or-
der to achieve the properties as intended. Short-term adap-
tivity and long-term evolution can accordingly be differen-
tiated as a combination of two nested control loops, where
the inner loop represents adaptivity and the outer loop (as
depicted in Figure 1) represents software evolution.

Regardless of the pace of change, both approaches ad-
dress the imprecise, emerging, and ever-changing nature of
large and long-running software systems and introduce it-
erative steps of adaptation and evolvement during run-time.
Both approaches are needed in practice and will need dif-
ferent solutions, but have in common the need for

1. reconfiguration of the architectural coupling and adap-
tive usage of differing strengths of communication
coupling,

2. measurement of dependability properties in order to
provide means to balance them and interactively ne-
gotiate them with users, and

3. run-time processable meta-data representing the cur-
rent run-time structure and the design-view, including
explicit context dependencies, explicit ordering and
wiring, explicit redundancy control.

3.3 Service-Oriented Computing

Although one could—in principle—build a system as de-
scribed above with almost any kind of technology, some are
more efficient and beneficial than others. Service-Oriented
Computing (SOC) is an emerging computing paradigm uti-
lizing services to support the rapid development of dis-
tributed applications in heterogeneous environments. The
visionary promise of service-oriented computing is a world
of cooperating services being loosely coupled to flexi-
bly create dynamic business processes and agile applica-
tions that may span organizations and computing platforms
and can, nevertheless, adapt quickly and autonomously to
changes of requirements or context. Web services may be
dynamically aggregated, composed, and enacted as Web
services workflows. In the following we investigate, how
and to what extent SOC can currently support adaptive de-
pendability, but also new challenges that arise from the de-
ployment of SOC. From the most important standardsthe
following relate to our work:

Web service coordination:The Web services coordination
framework (WS-Coordination [7]) provides a founda-
tion layer for consensus between Web services, where
specific consensus protocols can be built upon, e.g.,
distributed transactions. A service-oriented transaction
model has to provide comprehensive support for long-
running transactions between loosely-coupled (feder-
ated) service partners and resources, including negoti-
ations, conversations, commitments, contracts, track-
ing, payments, and exception handling, thereby con-
tributing to the notion of adaptive coupling. Two
particular standards build upon the WS-Coordination
framework: The WS-AtomicTransaction [7] and the
WS-BusinessActivity [1].
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Figure 1. Control loop of dependable evolution through run-time model-/constraint-change.

Web service publishing and discovery.The Universal De-
scription, Discovery and Integration (UDDI) proto-
col is one of the major building blocks for binding
(and therefore coupling) of Web services, alternate ap-
proaches are available as well [3].

Web service meta-data exchange.This standard [6] explic-
itly addresses the need for extensive exchange of meta-
data in an environment which deploys adaptive cou-
pling. It provides a framework to support meta-data
for particular purposes being exchanged between inter-
ested participants and is therefore an important means
of run-time manipulation of software.

Service oriented middleware (SOM).The highly dynamic
modularity and need for flexible integration of services
lead to the question to what extent service-orientation
at the middleware layer itself is beneficial (or not).
While the idea is tempting, to provide services like
a transaction service or a group membership service
(service groups), in some cases such a “service” is
more a system’s aspect than a coherent service, like for
instance most dependability attributes. Providing end-
to-end dependability and autonomic capabilities in a
heterogeneous, potentially cross-organizational SOA
is a particular challenge and the limits and benefits
have still to be investigated.

Service replication.[11] compares state-of-the-art service
replication middleware with object replication middle-
ware on an architectural level in the case of strict con-
sistency: Object and service replication middleware
share many commonalities and only subtle differences,
caused by (i) the different granularity of objects and

services and (ii) different technology standards (e.g.,
CORBA vs. WS). Clearly, the wheel need not be re-
invented here.

Summing it up, service-oriented computing addresses
some needs for adaptive dependability between a sys-
tem’s constituents (coordination, discovery, meta-data), and
hence contributes to the dependability of such systems. On
the other hand, SOC poses new research challenges, in par-
ticular for the SLA of typical end-to-end properties, like de-
pendabilityguarantees. In some cases, SOC turns out to
be “yet another technology”, but does not contribute to im-
provements, which is, e.g., the case for replication. There-
fore, SOC as it is today provides some promising aspects,
but today’s realizations still fall short to address the full
scope of needs of adaptive, dependable systems. Hence, fu-
ture research is needed to develop SOC standards and tech-
nology to their full potential.

4. A framework for business integration

In many cases, service-oriented architectures can now re-
alize the vision of a “plug-and-play” business IT infrastruc-
ture. Web services could also leverage the creation of busi-
ness networks through which aggregations of products and
services can flow freely. They have the potential for trans-
forming how businesses and organizations interact within
themselves and with others. Web services are expected to
fuel a new wave of electronic business, application integra-
tion, and business-to-business (B2B) interactions, as the in-
dustry moves towards application and service integration,
rather than dedicated system development that require ex-
tensive design, deployment and integration efforts.
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Figure 2. A framework for agile business integration.



Business literature as well as scientific literature (for a
good overview on both aspects see e.g., [10]) discuss the
tight dependencies between information systems (in par-
ticular based on software services) and business functions.
Accordingly, Figure 2 integrates our findings into a frame-
work for agile integration of business functions and soft-
ware services: The y-axis denotes increasing complexity, on
the left-hand side with respect to IT complexity and on the
right-hand side with respect to business complexity. From
simple to more complex entities the systems provide emerg-
ing behavior, while it is important not to forget the feed-
back from the large system onto the simple building blocks.
The x-axis denotes the integration of IT and business, fol-
lowing a common layered approach. The bottom-up ap-
proach of software composition imposes the need for flexi-
ble composability, while the top-down approach of software
requirements analysis demands agile software development
processes and ICT (Information and Communication Tech-
nology) agility in general. Notably, human machine inter-
actions with the IT building blocks take place at each of the
layers following different tasks. So far we do not experience
IT-based user interactions with the business layers, which is
definitely in the scope of future research work.

The subject of Service Oriented Computing is vast
and enormously complex, spanning many concepts and
technologies that find their origins in diverse disciplines
like Workflow Management Systems (WFMS), Component
Based Computing (CBC), “classical” Web applications, and
Enterprise Application Integration (EAI) including Mes-
sage Oriented Middleware (MoM). This is shown in the
center of the framework figure. In addition, there is a strong
need to merge technology with an understanding of busi-
ness processes and organizational structures, a combination
of recognizing an enterprise’s pain points and the potential
solutions that can be applied to correct them. This is shown
with the arrows denoted as “SOA agility potentials”, point-
ing into deeper business integration or increased complex-
ity. Notably, there is one emerging area dealing with in-
creased complexity but with less business integration: The
question of Service oriented Middleware (SOM), that is, to
what extent middleware itself should be service-oriented.

Summing up, Figure 2 provides a convenient overview
to explicitly address the two dimensions of complexity and
business integration from the software (IT) point of view.
It allows to arrange technologies accordingly to show their
interrelations and correlations, and to precisely describe the
required future research directions for dependable and adap-
tive software systems on different levels ranging from dif-
ferent software layers to business processes. It also stresses
the fact that complexity and business integration are not just
two separate aspects, but rather two dimensions of agility
concepts in general.

5. Conclusion and future work

The success of businesses and organizations increasingly
depends on their flexibility to adapt to a constantly changing
environment. Our framework for agile business integration
shows the potential for SOA, but also the future research
work that still has to be done. Even more so, Web services
as today’s SOA implementation, contribute to adaptive de-
pendability to some extent, but also pose new challenges
on typical end-to-end properties, like dependabilityguaran-
tees. Therefore, future research is needed to develop SOC
standards and technology to their full potential.
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