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Abstract

The inertness of today’s software systems turns innova-
tive applications into an obstacle rather than an enabler
and results in dependability degradation during the sys-
tems’ lifetime. Even more so, heterogeneity, scale, and dy-
namics open up what Laprie called the dependability gap.
In this position paper, we identify the need to converge
methods from software engineering with traditional mid-
dleware and dependable systems research to close the de-
pendability gap. In particular, we suggest a nested control
loop approach, where the inner loop addresses short-term
changes autonomously, while the outer loop addresses long-
term evolution by run-time software engineering.

1. Dependability Gap

While computing is becoming a utility and software ser-
vices increasingly pervade our daily lives, dependability is
no longer restricted to critical applications, but rather be-
comes a cornerstone of the information society. Depend-
ability clearly is a holistic concept: Contributing factors are
not only technical, but also social, cultural (i.e. corporate
culture), psychological (perceived dependability), manage-
rial, and economical. Fostering learning is a key, and sim-
plicity is generally an enabler for dependability.

Among technical factors, software development meth-
ods, tools, and techniques contribute to dependability, as
defects in software products and services may lead to fail-
ure and also provide typical access for malicious attacks. In
addition, there is a wide variety of fault tolerance techniques
available, ranging from persistence provided by databases,
replication, transaction monitors to reliable middleware
with explicit control of quality of service properties.

Unfortunately, heterogeneous, large-scale, and dynamic
software systems that typically run continuously often tend
to become inert, brittle, and vulnerable after a while. The

key problem is, that the most innovative systems and appli-
cations are the ones that suffer most from a significant de-
crease in (deterministic) dependability when compared to
traditional critical systems, where dependability and secu-
rity are fairly well understood as complementary concepts
and a variety of proven methods and techniques is available
today [1]. In accordance with Laprie [5] we call this effect
the dependability gap, which is widened in front of us be-
tween demand and supply of dependability, and we can see
this trend further fueled by an ever increasing cost pressure.

This is caused by some of the following reasons [7, 5]:

• Change of context and user needs: It is impossible to
reasonably predict all combinations of change during
design, implementation, deployment, and — most im-
portantly — during run-time.

• Imprecise (and sometimes even competing or con-
tradictory) requirements: Users are either inarticu-
late about their precise criteria for correctness, perfor-
mance, dependability, and other system qualities, or
different users impose competing or contradictory re-
quirements on the system, partially because of incon-
sistent needs.

• Interdependencies between systems and software arte-
facts, and emerging behaviour: The system may be
too complex to predict even its internal behaviours pre-
cisely.

As a result, traditional systems experience permanent
dependability degradationthroughout their life-time. This
in turn requires continuous and highly responsive human
maintenance intervention and repetitive software develop-
ment processes. While this need for intervention is costly,
error-prone, and hence further impairs dependability, it
may, in some cases, even become prohibitively slow com-
pared to the system’s pace in normal operation.

We can see two complementary approaches to address
the problem of dependability degradation: Adaptive cou-
pling and run-time software engineering. We contribute



with the proposal to integrate these two approaches in a
nested control loop approach that converges methods from
software engineering with methods from traditional de-
pendability research.

2. Adaptive and autonomous coupling

Adaptiveness is envisaged in order to react to observed,
or act upon expected (temporary)short-termchanges of the
system itself, the context/environment (e.g., resource vari-
ability or failure scenarios) or users’ needs (e.g., day/night
setting) and expectations (e.g., responsiveness). As this
kind of adaptivity should be provided without explicit user
intervention, it is also termed autonomous behavior or self-
properties, and often involves monitoring, diagnosis (anal-
ysis, interpretation), and reconfiguration (repair) [4].

One of the main reasons why many approaches fell short
in the past, however, lies in the major focus on the system’s
components (e.g., by focusing on recompilation, reconfigu-
ration, and redeployment of components), while complexity
theory [6] on the other hand clearly shows that the over-
all properties of large and complex software systems are
largely determined by the internal structure and interaction
of its parts and less by the function of its individual compo-
nents. Even more so, a complex software system provides
a mixture of tightly and loosely coupled parts. As an im-
portant consequence, the overall system properties are de-
termined not only by the structure but also by the strength
of coupling of its relationships.

Thus the inner control loop has to adaptively configure
the strength of the architectural coupling between the sys-
tem’s constituents as the most promising approach to ex-
plicitly balance competing dependability and security prop-
erties of the overall system according to the respective sit-
uation. This control should flexibly be performed as inter-
action between infrastructure and application (or even the
end user), typically through run-time selection and recon-
figuration of dependability protocols, e.g., consistency of
replication protocols [3].

3. Run-time software engineering

As not all possible evolvements can be foreseen for long-
running software,long-termevolution has to be supported
to regulate the emerging behavior of large and dynamic sys-
tems, again, with respect to the evolvement of the require-
ments and user expectations, but also in response to long-
term changes in the context.

This will be performed by changing the system’s design
during run-time, which in turn requires run-time process-
able requirements and design-views in the form of con-
straints [2], models (”UML virtual machine”), or (partial)
architectural configurations. The ultimate idea here is to
move into run-time what previously could only be done by
modifying an application off-line during design-time.

These run-time accessible and processable requirements
can be stored in repositories or be accessed via reflection,
aspect-oriented programming, or protocols for meta-data
exchange. They can explicitly be manipulated and config-
ured, which allows such a system to balance or negotiate
certain properties against each other or against user needs
during run-time.

Clearly, this requires middleware services to support ma-
nipulation of requirements and negotiation of properties
and needs. The vision here is a convergence of software
development tools with middleware (including traditional
dependability, fault tolerance, and adaptivity concepts), to
provide forrun-time software development tools in the form
of middleware servicesto compensate for dependability
degradation byre-engineering running software.

4. Future work

Regardless of the pace of change, both approaches ad-
dress the imprecise, emerging, and ever-changing nature of
large and long-running software systems and introduce it-
erative steps of adaptation and evolvement during run-time.
Both approaches are needed in practice and will need differ-
ent solutions, but have in common the need for (i) run-time
measurement of dependability properties, and (ii) run-time
processable meta-data representing the current architectural
structure and design-view. This clearly shows the need for
research to converge methods from software engineering,
middleware, and traditional dependable systems.
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