
Adaptive Voting for Balancing Data Integrity with
Availability

Johannes Osrael, Lorenz Froihofer, Matthias Gladt, Karl M.Goeschka

Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1, 1040 Wien, Austria
[osrael|froihofer|gladt|goeschka]@tuwien.ac.at

Abstract. Data replication is a primary means to achieve fault tolerance in dis-
tributed systems. Data integrity is one of the correctness criteria of data-centric
distributed systems. If data integrity needs to be strictlymaintained even in the
presence of network partitions, the system becomes (partially) unavailable since
no potentially conflicting updates are allowed on replicas in different partitions.
Availability can be enhanced if data integrity can be temporarily relaxed during
degraded situations. Thus, data integrity can be balanced with availability.
In this paper, we contribute with a new replication protocolbased on traditional
quorum consensus (voting) that allows the configuration of this trade-off. The key
idea of our Adaptive Voting protocol is to allow non-critical operations (that can-
not violate critical constraints) even if no quorum exists.Since this might impose
replica conflicts and data integrity violations, differentreconciliation policies are
needed to re-establish correctness at repair time. An availability analysis and an
experimental evaluation show that Adaptive Voting provides better availability
than traditional voting if (i) some data integrity constraints of the system are re-
laxable and (ii) reconciliation time is shorter than degradation time.

1 Introduction

Replication is one of the primary mechanisms to enhance availability of distributed
systems. One correctness criterion for data-centric applications are data integrity con-
straints, such as value constraints, relationship constraints (cardinality, XOR), unique-
ness constraints and other predicates. A system isconstraint consistentif all data in-
tegrity constraints are satisfied.

If strict constraint consistency has to be ensured all the time - even in the presence
of failures - the system becomes (at least partially1) unavailable in degraded scenarios
(e.g., node or link failures) since neither potentially conflicting updates on replicas in
different partitions nor updates that possibly violate data integrity constraints are al-
lowed. On the other hand, some applications (e.g., [3, 4]) exist where consistency can
be temporarily relaxed in order to achieve higher availability.

The DeDiSys [5] middleware extends state-of-the-art object-based middleware such
es CORBA, EJB, or .NET with explicit management of data integrity constraints and

1 Even if a majority partition or more generally - a quorum - exists [1, 2], significant parts of the
system become unavailable.

froihofer
Textfeld
Copyright for this work was transferred to Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer.
This is the author's version. The original publication is available at: http://www.springerlink.com/content/c085010451201507/

provides novel adaptive replication protocols that enablethe balancing between avail-
ability and consistency.

In this paper2, we focus on the replication part of the DeDiSys middleware and
contribute with a new replication protocol calledAdaptive Voting(AV) that allows to
configure the trade-off between availability and data integrity. AV is based on the tra-
ditional voting scheme [2] but allows non-critical operations even if no quorum exists.
AV offers different policies to re-establish correctness when the failures are repaired.

Paper OverviewOur system model is presented in Sect. 2. Section 3 introduces the key
idea of the new Adaptive Voting protocol. Section 4 describes the different modes of AV
in detail. Section 5 presents the results of an experimentalevaluation of the protocol.
Our work is compared to related work in Sect. 6 before we conclude in Sect. 7.

2 System Model

We focus on tightly-coupled, data-centric, object-oriented distributed systems with up
to about 30 server nodes and an arbitrary number of client nodes. Server nodes host
objects which are replicated to other server nodes in order to achieve fault tolerance.
We assume full replication, i.e., objects are replicated toall nodes. We consider both
node and link failures (partitioning): The crash failure [6] model is assumed for nodes
and links may fail by losing but not duplicating or corrupting messages.

We assume a partially synchronous system, where clocks are not synchronized, but
message time is bound. A group membership service is assumedin our system, which
provides a single view of the nodes within a partition, i.e.,it is used to detect node and
link failures. Furthermore, we assume the presence of a group communication service
which provides multicast to groups with configurable delivery and ordering guarantees.

We assume the correctness of the system is expressed in the form of application-
specific data integrity constraints, which are defined upon objects that encapsulate ap-
plication data (e.g., Entity Beans in Enterprise Java Beansterminology). These objects
do not contain business logic and typically correspond to a row in a table of a relational
database.

Not all constraints of an application are of equal importance. Some have to be satis-
fied at any point in time while others might be relaxed temporarily when failures occur.
To allow such flexibility, we provide two different constraint classes [7] with respect
to the trading of constraint consistency for availability:Non-tradeable constraintsmust
never be violated. Thus they cannot be traded for higher availability during degradation.
Tradeable constraintscan be temporarily relaxed during degraded situations. Read op-
erations cannot affect data integrity constraints; thus they are non-critical with respect to
data integrity. For write operations we distinguishcritical andnon-criticalwrite opera-
tions. The former affect at least one non-tradeable while the latter affect only tradeable
constraints.

2 This work has been partially funded by the European Community under the FP6
IST project DeDiSys (Dependable Distributed Systems, contract number 004152,
http://www.dedisys.org).

3 Adaptive Voting

3.1 Weighted Voting

In Weighted Voting [2], a generalization of Majority Voting[1], each replica is assigned
some number of votes. Whenever a read or write operation shall be performed, at least
RQ (read quorum) orWQ (write quorum) votes must be acquired. Let the total number
of votes beV . The following conditions must be satisfied:

RQ + WQ > V (1) WQ >
V

2
(2)

WQ, RQ, V ∈ N andWQ, RQ ≤ V are assumed3. Condition (1) prevents read-write
conflicts while condition (2) prevents write-write conflicts.

For the sake of simplicity we further assume in this paper that all replicas have equal
votes (i.e., 1) and each node in the system hosts one replica.Thus, the total number of
votesV becomes the total number of nodes in the system, denoted asN . We denote
this simplification of weighted voting asTraditional Voting.

Quorum consensus techniques allow to balance the cost of read against write oper-
ations by adjusting the sizes of the read and write quorum appropriately. Furthermore,
in static quorum schemes (as weighted voting), where the quorums are not reconfigured
in response to failures, no intervention is necessary when network failures are repaired
or nodes recover; i.e., failures are masked.

3.2 Key Concept of Adaptive Voting

Traditional voting blocks operations if the quorums cannotbe built. However, as dis-
cussed in Sect. 1, some systems do not require strict data integrity all times, i.e., con-
straint consistency can be temporarily relaxed during degraded situations.

Thus, our key idea is to enhance availability of traditionalvoting by allowing non-
critical operations even if no quorums exist, i.e., operations are allowed that may violate
tradeable constraints but do not affect non-tradeable constraints. Furthermore, the new
protocol calledAdaptive Voting(AV) allows to re-adjust the quorums in degraded situa-
tions in order to support the tuning4 of read against write operations. Since update con-
flicts and data integrity violations might be introduced, different policies are required
to re-establish replica and constraint consistency after nodes rejoin. The replica consis-
tency requirement for quorum consensus protocols is that a write quorum of replicas is
consistent.

AV distinguishes three modes of operation: normal mode, degraded mode, and rec-
onciliation mode. The latter can be further divided into twosub-modes: replica consis-
tency reconciliation and constraint consistency reconciliation. The current mode of the
replication protocol depends on the system state.
AV is in thenormal modewhen all nodes are reachable and all constraints are satisfied,
i.e., no partitions are present and all repair activities (reconciliation) are finished.

3 In this paper, we denote withN all positive natural numbers, i.e., zero is not included.
4 The choice of the quorums depends on the read/write ratio andis not influenced by the data

integrity constraints.

The replication protocol switches into thedegraded modewhen not all nodes are
reachable. Since node and link failures cannot be distinguished [8], node failures are
treated as network partitions until repair time.

AV entersreconciliation modewhen two or more partitions rejoin. The objective
of reconciliation is to re-establish replica and constraint consistency of the system.
System-wide constraint consistency can only be guaranteedif all nodes are reachable
(i.e., after the last rejoin of partitions). Thus, if partitions rejoin but the merged parti-
tion does not contain all nodes, only replica consistency isre-established. When the last
partition rejoins5, both replica and constraint consistency can be re-established.

4 Protocol Description

4.1 Normal Mode

In normal mode, AV behaves as the traditional voting protocol with the enhancement
that constraints are checked in case of write operations.

4.2 Degraded Mode

In traditional voting, read operations are allowed if a readquorum can be acquired and
write operations if a write quorum can be acquired.

AV enhances availability by allowing non-critical operations even if no quorum
exists. Critical operations are treated as in the normal mode to ensure that non-tradeable
constraints are never violated.

Partition Size The behavior of AV in degraded mode depends on the size of the par-
tition. The number of nodes within a partition is denoted asP . Thus the number of
nodes outside the partition isN −P . We denote the quorum sizes of the healthy system
(i.e., all nodes are reachable) asWQH andRQH . For the following considerations we
assume that the quorums are not larger than necessary, i.e.,WQH + RQH = N + 1,
which further impliesRQH ≤ WQH .

Write and read quorum exist:If a write quorum exists in a partition, a read quorum
exists as well. Outside the partition, no read or write quorum can exist.

N > P ≥ WQH ≥ RQH ⇔ N − P < RQH ≤ WQH (3)

Both critical and non-critical operations are allowed. Forcritical operations, the behav-
ior is as in the normal mode. We allow non-critical updates inother partitions even if no
write quorum exists. Thus, the quorum conditions are no longer satisfied system-wide
and write-write or read-write conflicts might arise. However, we avoid partition-internal

5 In our target application scenarios, nodes either eventually rejoin or are explicitly excluded
from the system after a while, e.g., by a system administrator.

conflicts by using a quorum scheme within the partition. The (partition-internal) quo-
rums can be adjusted according to the size of the partition. We denote the reduced
quorums in the partition asWQP andRQP .

Since a read quorumRQH as defined in the healthy system exists, up-to-date copies
of objects affected by non-tradeable constraints can be retrieved. For objects affected by
tradeable constraints, the read quorum might have been reduced in the partition. Thus,
performance of the read operation can be improved by readingfrom RQP . However,
since updates on objects affected by tradeable constraintsare allowed in all partitions,
the read operation might return an object that ispossibly stale.

Write quorum does not exist but read quorum exists:If a read quorum but no write
quorum exists in the partition, outside the partition no write quorum can exist but a read
quorum may exist:

WQH > P ≥ RQH ⇔ WQH > N − P ≥ RQH (4)

Only non-critical operations are allowed in this situation. As mentioned before, the quo-
rum sizes can be reduced for non-critical operations since valid quorums are guaranteed
only within the partition anyway.
Thus, the following steps are performed:

1. Check if one of the constraints affected by the operation is non-tradeable. If yes,
the update is not allowed. Otherwise proceed.

2. Find write quorumWQP and apply operation.
3. Mark constraints for re-evaluation: All objects affected by tradeable constraints are

possibly stale in degraded mode since updates are allowed indifferent partitions.
Thus, the constraint check needs not to be performed since ithas no significance in
general. However, the constraint is marked for re-evaluation at reconciliation time.

An object is saved in a version history before it is changed indegraded mode. This
allows detection of update conflicts and stepwise rollback during reconciliation in case
of constraint consistency violations.
Read operations are treated as in case (3).

Write and read quorum do not exist:If no read and write quorum exist in the partition,
both a read and write quorum may exist outside the partition:

RQH > P ≥ 1 ⇔ N − P ≥ WQH ≥ RQH (5)

Write operations are treated as in case (4). Read operationscan only be performed on a
reduced read quorumRQP . Thus, all objects returned by a read operation are possibly
stale. However, by applying the quorum conditions in the partition, it is guaranteed that
subsequent read operations within a partition will return the same version.

Quorum Adjustment AV allows updates in different partitions during degraded sit-
uations. However, within a partition, read-write and write-write conflicts shall be pre-
vented and the tuning of read against write operations shallbe supported. Thus, a quo-
rum scheme adapted to the size of the partition is applied:

WQP + RQP > P (6) WQP >
P

2
(7)

WQP , RQP , P ∈ N (8) WQP , RQP ≤ P (9)

Different quorum adjustment policies can be distinguished:

Adjustment Policy 1: Maintaining read and write quorumThe most obvious strategy is
to maintain the quorum sizes as in the healthy system as long as possible. If the partition
sizeP falls belowWQH (RQH), the write (read) quorum is set toP :

WQP = min (WQH , P) =

{

WQH : P ≥ WQH

P : P < WQH
(10)

RQP = min (RQH , P) =

{

RQH : P ≥ RQH

P : P < RQH
(11)

Adjustment Policy 2: Proportional adjustmentAdjustment policy 1 maintains the con-
figuration of the healthy system as long as possible but with the cost that the quorums
become larger than necessary. In order to maintain the read/write tuning of the healthy
system, the read and write quorum in the partition can be adjusted proportional to the
size of the partition. SinceRQ, WQ ∈ N, exact proportional adjustment is not always
possible. However, to achieve “optimal” proportional adjustment,

min
RQP , WQP

∣

∣

∣

∣

P

N
−

WQP

WQH

∣

∣

∣

∣

+

∣

∣

∣

∣

P

N
−

RQP

RQH

∣

∣

∣

∣

(12)

needs to be solved, considering the above mentioned side conditions (6), (7), (8), (9),
andWQP + RQP = P + 1 to minimize the quorum sizes. This discrete linear opti-
mization problem can be solved e.g., by using the branch and bound algorithm [9].

Adjustment Policy 3: Arbitrary adjustmentIn principle, all adjustments are allowed, as
long as the above mentioned conditions (6), (7), (8), and (9)are met.

Figure 1 gives examples for the presented quorum adjustmentstrategies. The horizontal
axis denotes the sizeP of the partition, decreasing from the left side (P = N) to the
right side (P=1). The vertical axis shows the sizes of the read and write quorums.

4.3 Reconciliation Mode

The overall goal of reconciliation is to re-establish constraint consistency. However, full
constraint consistency can only be re-established if all nodes are available. Thus, if this
is not the case, AV only re-establishes replica consistencyin the merged partition.

Fig. 1. Quorum adjustment policies

Non-critical operations are not allowed in reconciliationmode, therefore availability
is reduced in this mode. Thus, reconciliation should be as fast as possible. In order to
avoid combinatorial explosion, we use simple (application-defined) heuristics in the
reconciliation phase, e.g., to select a particular versionin case of a write-write conflict.
Reconciliation is performed in the following steps:

1. Re-adjustment of quorum sizes.
2. Re-establishment of replica consistency.
3. Re-establishment of constraint consistency if all nodesare available.

Re-adjustment of quorum sizesThe quorum sizes of the merged partition needs to be
adjusted so that the appropriate quorum conditions are obeyed.

Re-establishment of replica consistencyAV allows non-critical updates in all partitions,
even if no write quorum exists. Thus, write-write conflicts might arise. These conflicts
can be detected by comparing the version lists of the partitions. If updates have occurred
in only one partition, the version list of this partition is applied at a write quorum of the
merged partition. In case of a conflict between the updates inthe different partitions
(we denote this asreplica conflict), one of the replicas is chosen according to some pre-
defined criterion (e.g., the larger partition wins). The version list of the losing partition
is discarded. The version list of the winning partition is adopted by a write quorum of
the merged partition.

Re-establishment of constraint consistencySystem-wide constraint consistency can
only be re-established if all nodes are available. If this isthe case, all constraints that
are marked for re-evaluation are checked again. If a constraint is violated, the following
policies are defined to re-establish data integrity:

1. Constraint conflict policy 1: Stepwise rollback: Objectsaffected by the constraint
are stepwise reverted to previous versions till the constraint is satisfied.

2. Constraint conflict policy 2: Compensation actions: In order to avoid rollbacks,
application-specific compensation actions can be defined. For instance, a simple
compensation action is to choose a default version in case ofa conflict.

The chosen version is applied at a write quorum of the merged partition. All tentative
versions are discarded, i.e., the version lists are cleaned.

5 Experimental Evaluation

Based on our availability analysis [10] we have concluded that AV yields better avail-
ability over time if reconciliation time is short in comparison to degradation time6.
Thus, we have implemented AV in the Java-based Neko framework [11] and compare
reconciliation time vs. degradation time for two differentconstraint conflict policies. In
case of a replica conflict, the version of the partition wheremore updates have occurred
is chosen.

A simple inter-object constraint is assumed: The state of anobject of class A/B is
represented by an integer value a/b. For each pair of objectsof class A and B, the con-
strainta + b < constant must hold in the healthy system. The constraint is tradeable,
i.e., it can be temporarily relaxed during degradation. An update operation can incre-
ment a/b by 1. The system consists of 20 nodes. The initial write quorum is 15 and the
initial read quorum is 6. The system degrades into two partitions, both containing 10
nodes. The write/read quorums are adjusted to 8/3 in both partitions in order to balance
read against write operations. On average, 150 invocationsare started per second in
each partition. a is updated in one partition and b in the other one. The total degradation
time has been varied from 3 to 60 seconds. The measurements have been conducted
in the Neko v0.9 simulation mode on a single machine (PentiumM, 795 MHz, 1 GB
RAM, Windows XP SP2).

Fig. 2. Reconciliation time vs. degradation time

Figure 2 shows the lower bound of reconciliation time if a compensation action is ap-
plied and the upper bound if a roll-back strategy is applied in our example configuration.
The fastest compensation action is to set default values in case of a constraint violation.
If constraint consistency within the partitions is assured, the worst case for reconcilia-
tion is that a partition needs to be rolled-back completely.

The evaluation gives an indication that reconciliation time is shorter than degrada-
tion time in a configuration typical for our target applications. However, reconciliation
time is highly application-specific (depending on the constraints, failure pattern, load
during degradation, reconciliation policies, etc.), thusfuture work includes evaluation
of the protocol in a real-world application scenario - the Experimental Physics and In-
dustrial Control System (EPICS) [4].

6 Degradation time is the period where node and/or link failures are present.

6 Related Work

Various dynamic quorum schemes (e.g., [12, 13]) have been proposed which adapt to
changes in the system due to failures. However, in contrast to our approach they are
(i) pessimistic, i.e., they preserve replica consistency despite failures, and (ii) do not
consider data integrity as correctness criterion.

Trading replica consistency for increased availability has been addressed in dis-
tributed object systems such as [14, 15]. However, these systems either guarantee strong
replica consistency or no replica consistency at all. TACT (Tunable Availability and
Consistency Trade-offs) [16] fills in the space between by providing a continuous con-
sistency model based on logical consistency units (conits). The consistency level of each
conit is defined using three application-independent metrics – numerical error, order er-
ror, and staleness. TACT provides a fine-grained trade-off between replica consistency
and availability but does not focus on constraint consistency.

While our approach treats disconnected operation as a failure scenario, disconnec-
tions are inherent in mobile environments. Thus, differentsolutions for reconciliation of
divergent replicas have been proposed for mobile environments: In Bayou [17], applica-
tion developers need to define application-specific conflictdetection and reconciliation
policies. Replica consistency is re-established by an anti-entropy protocol with eventual
consistency guarantees. Our approach offers the same flexibility as Bayou but offers
pre-defined reconciliation policies in addition. Gray et al. [18] introduced the concept
of tentative transactions: Transactions are tentatively committed on replicated data on
mobile (disconnected) nodes and later applied at a master copy when the nodes rejoin.
If the commit on the master copy fails, the originating node is informed why it failed.
Application-specific semantics are used for conflict resolution in the mobile transaction
management system presented in [19].

Besides the already mentioned differences to our approach,all of the above repli-
cation and reconciliation approaches and other optimisticreplication systems [20] have
one commonality: In contrast to our approach, they either donot address constraint
consistency explicitly or presume strong data integrity.

7 Conclusion

We presented Adaptive Voting (AV), a new replication protocol based on traditional
voting, that allows to balance data integrity against availability in degraded situations
when node and link failures occur. The key idea of AV is to allow non-critical operations
(that only affect non-critical data integrity constraints) even if the quorum conditions
cannot be met. AV does not only provide adaptiveness by trading availability against
constraint consistency, it also allows to re-adjust the quorum sizes in degraded situations
in order to balance the cost of read against write operationswithin a partition. We have
defined different reconciliation policies in order to re-establish replica and constraint
consistency when nodes recover and network partitions rejoin.

Our availability analysis presented in [10] showed that AV provides better availabil-
ity than traditional voting if (i) some of the data integrityconstraints can be temporarily
relaxed and (ii) reconciliation time is shorter than degradation time. Our experimental

evaluation indicates that AV is beneficial in configurationstypical for our target appli-
cations.

References

[1] R.H. Thomas. A majority consensus approach to concurrency control for multiple copy
databases.ACM Trans. Database Syst., 4(2), 1979.

[2] D.K. Gifford. Weighted voting for replicated data. InSOSP ’79: Proc. of the 7th ACM
Symp. on Operating Systems Principles, pages 150–162. ACM Press, 1979.

[3] R. Smeikal and K.M. Goeschka. Fault-tolerance in a distributed management system: a
case study. InProc. 25th Int. Conf. on Software Engineering, pages 478–483. IEEE, 2003.

[4] Epics - experimental physics and industrial control system. http://aps.anl.gov/epics/.
[5] J. Osrael, L. Froihofer, K.M. Goeschka, S. Beyer, P. Galdámez, and F. Muñoz. A system

architecture for enhanced availability of tightly coupleddistributed systems. InProc. of 1st
Int. Conf. on Availability, Reliability, and Security. IEEE, 2006.

[6] F. Cristian. Understanding fault-tolerant distributed systems.Commun. ACM, 34(2), 1991.
[7] L. Froihofer, J. Osrael, and K.M. Goeschka. Trading integrity for availability by means

of explicit runtime constraints. InProc. 30th Int. Computer Software and Applications
Conference. IEEE, 2006.

[8] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus with
one faulty process.Journal of the ACM, 32(2):374–382, 1985.

[9] S.L.K. Rountree and B.E. Gillet. Parametric integer linear programming: A synthesis of
branch and bound with cutting planes.European Journal of Operations Research, 1982.

[10] J. Osrael, L. Froihofer, M. Gladt, and K.M. Goeschka. Availability of the adaptive voting
replication protocol. Technical Report IR3.3-TUV-03, DeDiSys Consortium, 2006.

[11] P. Urban, X. Defago, and A. Schiper. Neko: a single environment to simulate and prototype
distributed algorithms. InProc. 15th Int. Conf. on Information Networking, pages 503–511.
IEEE, 2001.

[12] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining the consistency of
a replicated database.ACM Trans. Database Syst., 15(2):230–280, 1990.

[13] J. Pâris. Voting with witnesses: A consistency schemefor replicated files. InProc. of the
6th Int. Conf. on Distributed Computing Systems, pages 606–612. IEEE, 1986.

[14] P. Felber and P. Narasimhan. Reconciling replication and transactions for the end-to-end
reliability of corba applications. InProc. of Confederated Int’l Conf. DOA, CoopIS and
ODBASE 2002, volume 2519 ofLNCS, pages 737–754. Springer, 2002.

[15] Y. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A. Karr, P. Rubel, C. Sabnis, W.H. Sanders,
R.E. Schantz, and M. Seri. Aqua: An adaptive architecture that provides dependable dis-
tributed objects.IEEE Trans. on Computers, 52(1):31–50, Jan. 2003.

[16] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model
for replicated services.ACM Trans. Comput. Syst., 20(3):239–282, 2002.

[17] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spreitzer, and C.H. Hauser.
Managing update conflicts in bayou, a weakly connected replicated storage system. In
Proc. 15th ACM Symp. on Operating Systems Principles, pages 172–182. ACM, 1995.

[18] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In
Proc. Int. Conf. on Management of Data, pages 173–182. ACM, 1996.

[19] N. Preguica, C. Baquero, F. Moura, J. Legatheaux Martins, R. Oliveira, H. Domingos,
J. Pereira, and S. Duarte. Mobile transaction management inmobisap. InCurrent Issues
in Databases and Information Systems, volume 1884 ofLNCS, pages 379–386. Springer,
2000.

[20] Y. Saito and M. Shapiro. Optimistic replication.ACM Comput. Surv., 37(1):42–81, 2005.

