Copyright for this work was transferred to Springer. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer.

This is the author's version. The original publication is available at: http://www.springerlink.com/content/c085010451201507/

Adaptive Voting for Balancing Data | ntegrity with
Availability

Johannes Osrael, Lorenz Froihofer, Matthias Gladt, KarGdeschka

Vienna University of Technology
Institute of Information Systems
Argentinierstrasse 8/184-1, 1040 Wien, Austria
[osrael |f roi hof er |gl adt |goeschka] @ uw en. ac. at

Abstract. Data replication is a primary means to achieve fault toleean dis-
tributed systems. Data integrity is one of the correctnessria of data-centric
distributed systems. If data integrity needs to be striothintained even in the
presence of network partitions, the system becomes (ppgrtimavailable since
no potentially conflicting updates are allowed on replicadifferent partitions.
Availability can be enhanced if data integrity can be terapity relaxed during
degraded situations. Thus, data integrity can be balan@bdwailability.

In this paper, we contribute with a new replication protdsased on traditional
guorum consensus (voting) that allows the configuratiohisfttade-off. The key
idea of our Adaptive Voting protocol is to allow non-critiagperations (that can-
not violate critical constraints) even if no quorum exigmce this might impose
replica conflicts and data integrity violations, differeetonciliation policies are
needed to re-establish correctness at repair time. Anadifty analysis and an
experimental evaluation show that Adaptive Voting prosidetter availability
than traditional voting if (i) some data integrity consiviai of the system are re-
laxable and (ii) reconciliation time is shorter than degitazh time.

1 Introduction

Replication is one of the primary mechanisms to enhancdadifity of distributed
systems. One correctness criterion for data-centric egiidins are data integrity con-
straints, such as value constraints, relationship canstrécardinality, XOR), unique-
ness constraints and other predicates. A systetonstraint consistenif all data in-
tegrity constraints are satisfied.

If strict constraint consistency has to be ensured all the ti even in the presence
of failures - the system becomes (at least partiallynavailable in degraded scenarios
(e.g., node or link failures) since neither potentially ffioting updates on replicas in
different partitions nor updates that possibly violateadiategrity constraints are al-
lowed. On the other hand, some applications (e.g., [3, 4pt&¥here consistency can
be temporarily relaxed in order to achieve higher avaiighbil

The DeDiSys [5] middleware extends state-of-the-art dbj@sed middleware such
es CORBA, EJB, or .NET with explicit management of data intggonstraints and

! Even if a majority partition or more generally - a quorum -si[1, 2], significant parts of the
system become unavailable.

froihofer
Textfeld
Copyright for this work was transferred to Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer.
This is the author's version. The original publication is available at: http://www.springerlink.com/content/c085010451201507/

provides novel adaptive replication protocols that en#éidebalancing between avail-
ability and consistency.

In this papet, we focus on the replication part of the DeDiSys middleward a
contribute with a new replication protocol callédlaptive VotingAV) that allows to
configure the trade-off between availability and data iritggAV is based on the tra-
ditional voting scheme [2] but allows non-critical opeaais even if no quorum exists.
AV offers different policies to re-establish correctnedsew the failures are repaired.

Paper OverviewOur system model is presented in Sect. 2. Section 3 intredhedkey
idea of the new Adaptive Voting protocol. Section 4 desaite different modes of AV
in detail. Section 5 presents the results of an experimentdlation of the protocol.
Our work is compared to related work in Sect. 6 before we aaein Sect. 7.

2 System Model

We focus on tightly-coupled, data-centric, object-orghtlistributed systems with up
to about 30 server nodes and an arbitrary number of clienésio8erver nodes host
objects which are replicated to other server nodes in omlachieve fault tolerance.
We assume full replication, i.e., objects are replicatedltmodes. We consider both
node and link failures (partitioning): The crash failuré f@odel is assumed for nodes
and links may fail by losing but not duplicating or corrugfimessages.

We assume a partially synchronous system, where clocksoasynchronized, but
message time is bound. A group membership service is assimnoed system, which
provides a single view of the nodes within a partition, iites used to detect node and
link failures. Furthermore, we assume the presence of gogrommunication service
which provides multicast to groups with configurable dalvand ordering guarantees.

We assume the correctness of the system is expressed inrthefapplication-
specific data integrity constraints, which are defined ugueas that encapsulate ap-
plication data (e.g., Entity Beans in Enterprise Java Béamsinology). These objects
do not contain business logic and typically correspond tmaain a table of a relational
database.

Not all constraints of an application are of equal importar8ome have to be satis-
fied at any pointin time while others might be relaxed templyravhen failures occur.
To allow such flexibility, we provide two different constnaiclasses [7] with respect
to the trading of constraint consistency for availabildan-tradeable constraintsiust
never be violated. Thus they cannot be traded for higheledibify during degradation.
Tradeable constraintsan be temporarily relaxed during degraded situationsdRea
erations cannot affect data integrity constraints; thag Hre non-critical with respect to
data integrity. For write operations we distingugsttical andnon-critical write opera-
tions. The former affect at least one non-tradeable whaddtter affect only tradeable
constraints.

2This work has been partially funded by the European Communitder the FP6
IST project DeDiSys (Dependable Distributed Systems, resht number 004152,
http://www.dedisys.org).

3 Adaptive Voting

3.1 Weighted Voting

In Weighted Voting [2], a generalization of Majority Votirig], each replica is assigned
some number of votes. Whenever a read or write operatiohtshalerformed, at least
RQ (read quorum) ofV @ (write quorum) votes must be acquired. Let the total number
of votes bel/. The following conditions must be satisfied:

Vv

RQ+WQ>V 1) wWQ >)

WQ,RQ,V € NandWQ, RQ < V are assumed Condition (1) prevents read-write
conflicts while condition (2) prevents write-write confict

For the sake of simplicity we further assume in this paperahaeplicas have equal
votes (i.e., 1) and each node in the system hosts one rephics, the total number of
votesV becomes the total number of nodes in the system, denot@d &¥e denote
this simplification of weighted voting a&aditional Voting

Quorum consensus techniques allow to balance the costahgsinst write oper-
ations by adjusting the sizes of the read and write quorumogiately. Furthermore,
in static quorum schemes (as weighted voting), where theugu®are not reconfigured
in response to failures, no intervention is necessary wieenark failures are repaired
or nodes recover; i.e., failures are masked.

3.2 Key Concept of Adaptive Voting

Traditional voting blocks operations if the quorums canb@tbuilt. However, as dis-
cussed in Sect. 1, some systems do not require strict dagriitytall times, i.e., con-
straint consistency can be temporarily relaxed during afdep situations.

Thus, our key idea is to enhance availability of traditiovating by allowing non-
critical operations even if no quorums exist, i.e., operatiare allowed that may violate
tradeable constraints but do not affect non-tradeabletings. Furthermore, the new
protocol calledAdaptive VotindAV) allows to re-adjust the quorums in degraded situa-
tions in order to support the tunifigf read against write operations. Since update con-
flicts and data integrity violations might be introducedfetient policies are required
to re-establish replica and constraint consistency afidea rejoin. The replica consis-
tency requirement for quorum consensus protocols is thaita guorum of replicas is
consistent.

AV distinguishes three modes of operation: normal moderatked mode, and rec-
onciliation mode. The latter can be further divided into tsub-modes: replica consis-
tency reconciliation and constraint consistency recaat@in. The current mode of the
replication protocol depends on the system state.

AV is in the normal modavhen all nodes are reachable and all constraints are sdtisfie
i.e., no partitions are present and all repair activities@nciliation) are finished.

% In this paper, we denote witK all positive natural numbers, i.e., zero is not included.
* The choice of the quorums depends on the read/write ratidsandt influenced by the data
integrity constraints.

The replication protocol switches into tlikegraded mod&vhen not all nodes are
reachable. Since node and link failures cannot be distatgui [8], node failures are
treated as network partitions until repair time.

AV entersreconciliation modevhen two or more partitions rejoin. The objective
of reconciliation is to re-establish replica and constraionsistency of the system.
System-wide constraint consistency can only be guararitedichodes are reachable
(i.e., after the last rejoin of partitions). Thus, if padits rejoin but the merged parti-
tion does not contain all nodes, only replica consistencg-isstablished. When the last
partition rejoin$, both replica and constraint consistency can be re-estedali

4 Protocol Description

4.1 Normal Mode

In normal mode, AV behaves as the traditional voting protedth the enhancement
that constraints are checked in case of write operations.

4.2 Degraded Mode

In traditional voting, read operations are allowed if a rqgadrum can be acquired and
write operations if a write quorum can be acquired.

AV enhances availability by allowing non-critical opemts even if no quorum
exists. Critical operations are treated as in the normaleto@nsure that non-tradeable
constraints are never violated.

Partition Size The behavior of AV in degraded mode depends on the size ofahe p
tition. The number of nodes within a partition is denotedrasThus the number of
nodes outside the partition /¢ — P. We denote the quorum sizes of the healthy system
(i.e., all nodes are reachable)d8) ; and RQ i . For the following considerations we
assume that the quorums are not larger than necessariVigy + RQyg = N + 1,
which further impliesRQy < WQg.

Write and read quorum existlf a write quorum exists in a partition, a read quorum
exists as well. Outside the partition, no read or write quooan exist.

N>P>WQu > RQu & N—-P<RQu <WQu (3)

Both critical and non-critical operations are allowed. Entical operations, the behav-
ior is as in the normal mode. We allow non-critical updatestirer partitions even if no
write quorum exists. Thus, the quorum conditions are nodomsgtisfied system-wide
and write-write or read-write conflicts might arise. Howewee avoid partition-internal

5 In our target application scenarios, nodes either evdgtugjoin or are explicitly excluded
from the system after a while, e.g., by a system administrato

conflicts by using a quorum scheme within the partition. Tfertftion-internal) quo-
rums can be adjusted according to the size of the partitiom.ddhote the reduced
quorums in the partition a8’ Qpr and RQ p.

Since a read quoruRQ i as defined in the healthy system exists, up-to-date copies
of objects affected by non-tradeable constraints can bieved. For objects affected by
tradeable constraints, the read quorum might have beereddn the partition. Thus,
performance of the read operation can be improved by redding RQ) ». However,
since updates on objects affected by tradeable constaim@llowed in all partitions,
the read operation might return an object thgiassibly stale

Write quorum does not exist but read quorum exidfsa read quorum but no write
quorum exists in the partition, outside the partition na&gquorum can exist but a read
quorum may exist:

WQu >P > RQy & WQu >N —P>RQy (4)

Only non-critical operations are allowed in this situatiés mentioned before, the quo-
rum sizes can be reduced for non-critical operations siatié guorums are guaranteed
only within the partition anyway.

Thus, the following steps are performed:

1. Check if one of the constraints affected by the operasomoin-tradeable. If yes,
the update is not allowed. Otherwise proceed.

2. Find write quoruni?¥ Q » and apply operation.

3. Mark constraints for re-evaluation: All objects affettey tradeable constraints are
possibly stale in degraded mode since updates are allowdiffénent partitions.
Thus, the constraint check needs not to be performed sihees iho significance in
general. However, the constraint is marked for re-evadnadt reconciliation time.

An object is saved in a version history before it is changedegraded mode. This
allows detection of update conflicts and stepwise rollbagkng) reconciliation in case
of constraint consistency violations.

Read operations are treated as in case (3).

Write and read quorum do not existf no read and write quorum exist in the partition,
both a read and write quorum may exist outside the partition:

RQuy >P>1 & N—-P>WQu > RQu (5)

Write operations are treated as in case (4). Read operationsnly be performed on a
reduced read quoruRQ p. Thus, all objects returned by a read operation are possibly
stale. However, by applying the quorum conditions in théifian, it is guaranteed that
subsequent read operations within a partition will rettnengame version.

Quorum Adjustment AV allows updates in different partitions during degradéd s
uations. However, within a partition, read-write and w#itate conflicts shall be pre-

vented and the tuning of read against write operations beagupported. Thus, a quo-
rum scheme adapted to the size of the partition is applied:

WQp+ RQp>P (6) wWQp > g (7)
WQP7 RQP7 PeN (8) WQP7 RQP < P (9)

Different quorum adjustment policies can be distinguished

Adjustment Policy 1: Maintaining read and write quoruhine most obvious strategy is
to maintain the quorum sizes as in the healthy system as bpgssible. If the partition
size P falls belowW Q g (RQm), the write (read) quorum is set fo:

WQP_min(WQHaP)—{E/QH giwgg 10
RQP:min(RQHap):{ﬁQH iiggg -

Adjustment Policy 2: Proportional adjustmeitdjustment policy 1 maintains the con-
figuration of the healthy system as long as possible but wighcbst that the quorums
become larger than necessary. In order to maintain theweiéeltuning of the healthy
system, the read and write quorum in the partition can besasfjiuproportional to the
size of the partition. Sinc&Q, WQ € N, exact proportional adjustment is not always
possible. However, to achieve “optimal” proportional asijnent,

min P _WQr P _EQr
RQp,WQp N WQH N RQH
needs to be solved, considering the above mentioned sidétioors (6), (7), (8), (9),

andWQp + RQp = P + 1 to minimize the quorum sizes. This discrete linear opti-
mization problem can be solved e.g., by using the branch anddalgorithm [9].

(12)

Adjustment Policy 3: Arbitrary adjustmer principle, all adjustments are allowed, as
long as the above mentioned conditions (6), (7), (8), ana@)met.

Figure 1 gives examples for the presented quorum adjuststrategies. The horizontal
axis denotes the sizB of the partition, decreasing from the left sidé & N) to the
right side (P=1). The vertical axis shows the sizes of the read and writeuqus.

4.3 Reconciliation Mode

The overall goal of reconciliation is to re-establish coaisit consistency. However, full
constraint consistency can only be re-established if albsare available. Thus, if this
is not the case, AV only re-establishes replica consisténttye merged partition.

Wan

Roy

Maintaining Write and Read Quorum

Wa,

Wl

Proportional Adjustment

Arbitrary Adjustment

Qp

[T

Wan

ROy

Wo,

N RQn 1 P WO RQw 1 P Wan E 1 P

Fig. 1. Quorum adjustment policies

Non-critical operations are not allowed in reconciliatinode, therefore availability
is reduced in this mode. Thus, reconciliation should be sisaa possible. In order to
avoid combinatorial explosion, we use simple (applicatiefined) heuristics in the
reconciliation phase, e.g., to select a particular versiaase of a write-write conflict.
Reconciliation is performed in the following steps:

1. Re-adjustment of quorum sizes.
2. Re-establishment of replica consistency.
3. Re-establishment of constraint consistency if all n@atesavailable.

Re-adjustment of quorum siz8he quorum sizes of the merged partition needs to be
adjusted so that the appropriate quorum conditions areembey

Re-establishment of replica consistemty allows non-critical updates in all partitions,
even if no write quorum exists. Thus, write-write conflictigit arise. These conflicts
can be detected by comparing the version lists of the pamttilf updates have occurred
in only one partition, the version list of this partition ig@ied at a write quorum of the
merged partition. In case of a conflict between the updatésdardifferent partitions
(we denote this aplica conflic), one of the replicas is chosen according to some pre-
defined criterion (e.g., the larger partition wins). Thesian list of the losing partition

is discarded. The version list of the winning partition iopted by a write quorum of
the merged partition.

Re-establishment of constraint consistenSystem-wide constraint consistency can
only be re-established if all nodes are available. If thithis case, all constraints that
are marked for re-evaluation are checked again. If a canstsaviolated, the following
policies are defined to re-establish data integrity:

1. Constraint conflict policy 1: Stepwise rollback: Objeaffected by the constraint
are stepwise reverted to previous versions till the comttimsatisfied.

2. Constraint conflict policy 2: Compensation actions: Idesrto avoid rollbacks,
application-specific compensation actions can be definediristance, a simple
compensation action is to choose a default version in caaeonflict.

The chosen version is applied at a write quorum of the mergetitipn. All tentative
versions are discarded, i.e., the version lists are cleaned

5 Experimental Evaluation

Based on our availability analysis [10] we have concluded &V yields better avail-
ability over time if reconciliation time is short in compsoin to degradation tinie
Thus, we have implemented AV in the Java-based Neko franiefddt and compare
reconciliation time vs. degradation time for two differeonstraint conflict policies. In
case of a replica conflict, the version of the partition whaoge updates have occurred
is chosen.

A simple inter-object constraint is assumed: The state aflgact of class A/B is
represented by an integer value a/b. For each pair of oljpéctass A and B, the con-
strainta + b < constant must hold in the healthy system. The constraint is tradeable
i.e., it can be temporarily relaxed during degradation. Adate operation can incre-
ment a/b by 1. The system consists of 20 nodes. The initiaéwgorum is 15 and the
initial read quorum is 6. The system degrades into two pantt both containing 10
nodes. The write/read quorums are adjusted to 8/3 in bothipas in order to balance
read against write operations. On average, 150 invocatiomstarted per second in
each partition. a is updated in one partition and b in therathe. The total degradation
time has been varied from 3 to 60 seconds. The measurememban conducted
in the Neko v0.9 simulation mode on a single machine (PentMyrii95 MHz, 1 GB
RAM, Windows XP SP2).

w
i

w
5}

o
&

full rollback in one partition

P
o =

=

reconciliation ime [s]

compensation action

= o

o 10 20 30 40 50 60
degradation time [s]

Fig. 2. Reconciliation time vs. degradation time

Figure 2 shows the lower bound of reconciliation time if a p@msation action is ap-
plied and the upper bound if a roll-back strategy is applmealir example configuration.
The fastest compensation action is to set default valuessa of a constraint violation.
If constraint consistency within the partitions is assuted worst case for reconcilia-
tion is that a partition needs to be rolled-back completely.

The evaluation gives an indication that reconciliationgiia shorter than degrada-
tion time in a configuration typical for our target applicats. However, reconciliation
time is highly application-specific (depending on the coaists, failure pattern, load
during degradation, reconciliation policies, etc.), tfutsire work includes evaluation
of the protocol in a real-world application scenario - thep&smental Physics and In-
dustrial Control System (EPICS) [4].

5 Degradation time is the period where node and/or link fesiuare present.

6 Redated Work

Various dynamic quorum schemes (e.g., [12, 13]) have begposed which adapt to
changes in the system due to failures. However, in contoastit approach they are
(i) pessimistic, i.e., they preserve replica consisterespite failures, and (ii) do not
consider data integrity as correctness criterion.

Trading replica consistency for increased availabilitg lh@en addressed in dis-
tributed object systems such as [14, 15]. However, thegermgeither guarantee strong
replica consistency or no replica consistency at all. TACUin@ble Availability and
Consistency Trade-offs) [16] fills in the space between lmyigling a continuous con-
sistency model based on logical consistency uniisity. The consistency level of each
conitis defined using three application-independent wetrinumerical error, order er-
ror, and staleness. TACT provides a fine-grained tradeedffiben replica consistency
and availability but does not focus on constraint consisten

While our approach treats disconnected operation as adalenario, disconnec-
tions are inherent in mobile environments. Thus, diffesemtitions for reconciliation of
divergentreplicas have been proposed for mobile environsnin Bayou [17], applica-
tion developers need to define application-specific corditection and reconciliation
policies. Replica consistency is re-established by anearttiopy protocol with eventual
consistency guarantees. Our approach offers the sameilitgxéls Bayou but offers
pre-defined reconciliation policies in addition. Gray et[&B] introduced the concept
of tentative transactions: Transactions are tentativeiyroitted on replicated data on
mobile (disconnected) nodes and later applied at a magpgrwben the nodes rejoin.
If the commit on the master copy fails, the originating noslenformed why it failed.
Application-specific semantics are used for conflict resoifuin the mobile transaction
management system presented in [19].

Besides the already mentioned differences to our appradicbf the above repli-
cation and reconciliation approaches and other optimisptication systems [20] have
one commonality: In contrast to our approach, they eithenobaddress constraint
consistency explicitly or presume strong data integrity.

7 Conclusion

We presented Adaptive Voting (AV), a new replication pratoeased on traditional
voting, that allows to balance data integrity against amlity in degraded situations
when node and link failures occur. The key idea of AV is towlfen-critical operations
(that only affect non-critical data integrity constrajngven if the quorum conditions
cannot be met. AV does not only provide adaptiveness byrgadvailability against
constraint consistency, it also allows to re-adjust thergosizes in degraded situations
in order to balance the cost of read against write operatigtinin a partition. We have
defined different reconciliation policies in order to re¢addish replica and constraint
consistency when nodes recover and network partitiongrejo

Our availability analysis presented in [10] showed that Advides better availabil-
ity than traditional voting if (i) some of the data integritgnstraints can be temporarily
relaxed and (ii) reconciliation time is shorter than degttamh time. Our experimental

evaluation indicates that AV is beneficial in configuratityyscal for our target appli-
cations.

References

(1]
(2]
(3]
[4]

R.H. Thomas. A majority consensus approach to concayr@ontrol for multiple copy
databasesACM Trans. Database Syst(2), 1979.

D.K. Gifford. Weighted voting for replicated data. BOSP '79: Proc. of the 7th ACM
Symp. on Operating Systems Principleages 150-162. ACM Press, 1979.

R. Smeikal and K.M. Goeschka. Fault-tolerance in a ttisted management system: a
case study. IfProc. 25th Int. Conf. on Software Engineerjnmges 478-483. IEEE, 2003.
Epics - experimental physics and industrial controlteys http://aps.anl.gov/epics/.

[5] J. Osrael, L. Froihofer, K.M. Goeschka, S. Beyer, P. @aldz, and F. Mufioz. A system

[6]
[7]
(8]
[9]
(10]

(11]

(12]
(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

architecture for enhanced availability of tightly coupbiidtributed systems. IRroc. of 1st
Int. Conf. on Availability, Reliability, and SecuritleEE, 2006.

F. Cristian. Understanding fault-tolerant distribdieystemsCommun. ACM34(2), 1991.
L. Froihofer, J. Osrael, and K.M. Goeschka. Trading gnity for availability by means
of explicit runtime constraints. IiProc. 30th Int. Computer Software and Applications
ConferencelEEE, 2006.

M.J. Fischer, N.A. Lynch, and M.S. Paterson. Imposgipibf distributed consensus with
one faulty processlournal of the ACM32(2):374-382, 1985.

S.L.K. Rountree and B.E. Gillet. Parametric integeehln programming: A synthesis of
branch and bound with cutting plandguropean Journal of Operations Researt882.

J. Osrael, L. Froihofer, M. Gladt, and K.M. Goeschka.aiability of the adaptive voting
replication protocol. Technical Report IR3.3-TUV-03, O&Ps Consortium, 2006.

P. Urban, X. Defago, and A. Schiper. Neko: a single emvinent to simulate and prototype
distributed algorithms. IRroc. 15th Int. Conf. on Information Networkingages 503-511.
IEEE, 2001.

S. Jajodia and D. Mutchler. Dynamic voting algorithros fnaintaining the consistency of
a replicated databasACM Trans. Database Sys15(2):230-280, 1990.

J. Paris. Voting with witnesses: A consistency schéonaeplicated files. IProc. of the
6th Int. Conf. on Distributed Computing Systepages 606—612. IEEE, 1986.

P. Felber and P. Narasimhan. Reconciling replicatioth ttansactions for the end-to-end
reliability of corba applications. IProc. of Confederated Int'l Conf. DOA, CooplS and
ODBASE 2002volume 2519 of NCS pages 737—754. Springer, 2002.

Y.Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A. KarrRubel, C. Sabnis, W.H. Sanders,
R.E. Schantz, and M. Seri. Aqua: An adaptive architectua¢ phovides dependable dis-
tributed objects|EEE Trans. on Computer$2(1):31-50, Jan. 2003.

H. Yu and A. Vahdat. Design and evaluation of a conitdsbsontinuous consistency model
for replicated servicesACM Trans. Comput. Sys20(3):239-282, 2002.

D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, MSpreitzer, and C.H. Hauser.
Managing update conflicts in bayou, a weakly connected caf@dd storage system. In
Proc. 15th ACM Symp. on Operating Systems Princjglages 172-182. ACM, 1995.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangereplication and a solution. In
Proc. Int. Conf. on Management of Dafaages 173-182. ACM, 1996.

N. Preguica, C. Baquero, F. Moura, J. Legatheaux MsytiR. Oliveira, H. Domingos,
J. Pereira, and S. Duarte. Mobile transaction managemambbisap. InCurrent Issues
in Databases and Information Systenaslume 1884 olLNCS pages 379-386. Springer,
2000.

Y. Saito and M. Shapiro. Optimistic replicatioACM Comput. Sury37(1):42-81, 2005.

