
Using Replication to Build Highly Available .NET Applications

Johannes Osrael1, Lorenz Froihofer1, Georg Stoifl2, Lucas Weigl2, Klemen Zagar3, Igor Habjan3, and
Karl M. Goeschka1

1Vienna University of Technology, Argentinierstrasse 8/184-1, 1040 Vienna, Austria, {osrael|froihofer|karl.goeschka}@tuwien.ac.at
2University of Applied Sciences Technikum Wien, Höchstädtplatz 5, 1200 Vienna, Austria, georg@stoifl.com, lucas.weigl@gmx.at

3Cosylab, Teslova ulica 30, SI-1000 Ljubljana, Slovenia, {klemen.zagar|igor.habjan}@cosylab.com

Abstract

Replication is a well-known technique to achieve fault-
tolerance in distributed systems, thereby enhancing avail-
ability. However, so far, not much attention has been paid
to object replication using Microsoft’s .NET technologies.
In this paper, we present the lessons we have learned dur-
ing design and implementation of a .NET based replica-
tion framework that allows building dependable, distributed
.NET applications. Our framework does not only support
traditional replication protocols like primary-backup repli-
cation or voting but also a new protocol for explicit balanc-
ing between data integrity and availability. Based on our
experiences, we recommend to use a state-of-the-art group
communication toolkit (e.g., Spread) and .NET Remoting as
basis for object replication in a .NET environment.

1. Introduction and contribution

Replication, the process of maintaining different copies
of an entity (data item, object), is used to enhance perfor-
mance and availability of distributed systems. A plethora
of replication techniques has been proposed and thoroughly
investigated since the 1970’s for many different domains
such as databases, tightly-coupled distributed systems (ob-
jects, middleware components), and more recently large-
scale, wide-area systems such as peer-to-peer and Grid en-
vironments. However, applying the well-understood prin-
ciples of replication to new paradigms (such as service-
oriented computing) or new technologies is nevertheless a
challenge. For instance, Microsoft’s .NET platform is a
relatively new technology where object-level replication is
still in its infancy. In this paper, we contribute by clos-

ing the gap between research and engineering and present
the lessons we have learned when we designed and im-
plemented a .NET-based framework that supports differ-
ent replication protocols such as primary-backup replica-
tion [1], voting [2], and the newly designed primary-per-
partition protocol [3].

Our replication framework has been developed within
the DeDiSys (Dependable Distributed Systems) research
project. Among others, DeDiSys aims at enhancing avail-
ability by temporarily relaxing data integrity. To control
this trade-off, explicit run-time management of data in-
tegrity constraints and consistency threats is required in
combination with a new kind of replication protocols (e.g.,
the primary-per-partition protocol). Target applications that
benefit from this approach range from control engineering
(e.g., the Advanced Control System [4]) to air traffic con-
trol (e.g., the Distributed Telecommunication Management
System [5, 6]).

In this paper, we do not focus on the specifics of the
DeDiSys research project but concentrate on the replication
part of the middleware system, that can be used for any kind
of general-purpose distributed system.

2. System model and architecture

System model We focus on tightly-coupled, data-centric,
object-oriented distributed systems [7] with up to about 30
server nodes and an arbitrary number of client nodes. Server
nodes host objects which are replicated to other server
nodes in order to achieve fault-tolerance. We consider both
node and link failures (partitioning), i.e., the crash failure
[8] model is assumed for nodes and links may fail by losing
but not duplicating or corrupting messages.

1

froihofer
Textfeld
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://dx.doi.org/10.1109/DEXA.2006.146

.NET Framework 2.0

Operating System

Application (Business Logic)

System.Runtime.Remoting System.Transactions

System.Collections...

Persistence/
Stable Storage

Replication
Manager

Replication
Protocol 1

Replication
Protocol n

Group
Membership

Service

Group
Communication

Activation
Service Invocation Service

Naming Service

Constraint
Consistency

Manager

...

Transaction
Service

Figure 1. DeDiSys .NET system architecture

System architecture We have presented the platform-
independent DeDiSys system architecture in [3]. Figure 1
shows the mapping of the architecture to a .NET environ-
ment. Our framework is based on .NET 2.0 using Windows
as underlying operating system. The C# programming lan-
guage has been chosen for implementation.

The core components of the system architecture are the
replication manager and its associated replication protocols
and the group membership and group communication ser-
vices. Further components are the invocation service, nam-
ing service, activation service, transaction service, and the
DeDiSys-specific constraint consistency manager [9].

3. Lessons learned

In this section we shortly describe each component and
present the most important lessons learned during design
and implementation. Finally we evaluate two options for
point-to-point communication.

3.1. Group communication and group mem-
bership service

A group membership service is used to keep track of
which nodes are operational, taking into account voluntary
group changes (join or leave) as well as node and link fail-
ures. Group communication provides reliable multicast to
groups with configurable delivery and ordering guarantees.

Group membership and group communication services
can be treated as separate components which interact with
each other. However, in practice, both components are usu-
ally integrated in one toolkit which is referred as view-
oriented group communication system [10].

From the variety of available state-of-the-art toolkits like
Appia [11], Spread [12], Ensemble [13], JGroups [14], and
GCT [15], to our knowledge three of them provide a C#
API: Spread, Ensemble, and GCT.

Any of the three toolkits could be used in a .NET repli-
cation framework from a technical point of view. However,
Spread is our first choice since a) the Spread community
seems to be more active than the other communities, b)
commercial support for Spread is available and c) Spread
is also used in our J2EE and CORBA implementations of
the framework which eases cross-technology comparison.

3.2. Replication manager and protocols

Replication is the primary means to achieve fault-
tolerance in our middleware infrastructure. The replication
core system is divided into two sub-parts: The replication
manager and the replication protocol.

The replication manager keeps track of object replicas in
the system. Thus, it maintains a mapping between the log-
ical object and its replicas. Furthermore, depending on the
replication model it supports, the roles of the replicas need
to be stored as well, e.g., primary replicas vs. secondary
replicas in a primary-backup scheme. The replication man-
ager has to be built from scratch since no previous work on
a .NET replication manager for partitionable environments
exists to our knowledge.

Our replication architecture supports both traditional
replication protocols (e.g., primary-backup replication [1],
voting [2]) and novel protocols for balancing data integrity
with availability (e.g., the primary-per-partition protocol
(P4) [3]).

The main lesson we have learned during implementation
of the replication manager and the protocols is that .NET
does neither offer specific features that would ease imple-
mentation nor does it aggravate it. Custom implementation
is required with respect to the invocation service. Com-
paring our .NET implementation of the manager and the
protocols with a previous implementation in a Java frame-
work [16] yields to the conclusion, that the existing Java
implementation could have been recoded rather easily in
C#. With .NET Remoting providing the invocation logic
it is best to have a replication manager and protocols that
are capable of handling IMessage as invocation context.

3.3. Invocation service

The role of the invocation service is to intercept all
method invocations upon a logical object and to ensure that
the invocation is properly delivered to the respective repli-
cas of that object. Also, the invocation service must prop-
erly convey the transaction context and other contextual in-
formation (e.g., authentication principal) from the client’s
to the replica’s process.

The invocation is the only interaction between the user

2

and the middleware; thus, further involvement of the mid-
dleware is made transparent after the call is issued.

There are several ways to implement the invocation ser-
vice in Microsoft .NET:

• Custom invocation API. This would typically be an
implementation of a command design pattern [17].
Though this approach is most flexible and provides an
elegant solution to issues such as atomicity and isola-
tion, it might be cumbersome to use for the application
developers, as it involves an implementation of a com-
mand object for every method.

• Aspect-Oriented Programming (AOP) [18]. Inter-
ceptors are injected in the call chain using cross-cuts
at method invocations of replicated objects. Several
AOP toolkits for .NET are available ([19][20][21]).
The drawback of this approach is that application de-
velopers have not yet adopted the AOP methodology
and that the toolkits have not yet reached production-
level maturity.

• .NET Remoting interceptors. The .NET framework
provides mechanisms for injecting interceptors at the
client and server side of the invocation chain. The ad-
vantage of this approach is that the infrastructure is
readily provided by the .NET framework itself. A dis-
advantage is that all the replicated objects must extend
the MarshalByRefObject class, thereby limiting
the designer’s options for inheritance.

Our effort so far has concentrated on the .NET Remoting
interceptors, which has also been used for replication pur-
poses in the past [22]. Since at a later time we might also
investigate other approaches, we have abstracted the inter-
ceptors with an API introducing before and after op-
eration delegates that hide the interception details (.NET
Remoting, AOP, synchronous, asynchronous, ...) from the
interceptor implementation. Thus, the implementation of
the invocation service can be replaced without affecting the
other components. For instance, it would be easy to weave
an AOP advice code snippet into the begin of method invo-
cations.

3.4. Transaction service

We have not yet made use of transactions, therefore this
subsection only presents findings of our technology investi-
gation and prototyping.

Before .NET 2.0, transactions were available through
the System.EnterpriseServices namespace.
EnterpriseServices is essentially an API that
exposes the COM+ infrastructure to code written for .NET.
Thus, in order to make use of transactions, the .NET code
had to be deployed as a COM+ component. Unfortunately,

COM+ applications are not so easy to deploy (e.g., using
the xcopy deployment commonly found in .NET). Also,
they impose a significant overhead, as .NET applications
must be exposed to the COM+ container via a COM/.NET
interop bridge.

With .NET 2.0, the System.Transactions library
was introduced that provides a native .NET implementation
of transactions. Transactions can be either lightweight (in-
side an application domain) or they might employ the Mi-
crosoft Distributed Transaction Coordinator (MSDTC).

Transactional resource managers are rel-
atively easy to implement by extending
the IEnlistmentNotification or the
ISinglePhaseNotification interface. The re-
source manager is then enlisted in a current transaction
(Transaction.Current), whereas the transaction
manager uses its Prepare, Rollback and Commit
methods to coordinate the two-phase (or single-phase)
commit protocol.

3.5. Naming service

The naming service maps human-readable object names
to logical object IDs. We have investigated two ways of
achieving this mapping:

• Active Directory. Active Directory is Microsoft’s im-
plementation of the Lightweight Directory Access Pro-
tocol (LDAP) that allows access to a distributed nam-
ing hierarchy. Active Directory is typically used to
store administrative information about entities such as
computers, users and printers.

• Custom implementation. If only functional require-
ments (name-to-object binding and resolution) need
to be implemented, and non-functional requirements
(distribution, replication, ...) are provided using other
means, a naming service is not difficult to implement
– essentially, it is a simple IDictionary implemen-
tation.

Because Active Directory incurs a lot of overhead due to the
non-functional requirements it addresses, and is non-trivial
to set-up and administer, we have decided to implement the
naming service using a dictionary implementation provided
with .NET. This is sufficient since we use our framework’s
replication logic to replicate the naming service.

3.6. Activation service

The activation service is responsible for creating in-
stances of objects.

With Enterprise Services, the COM+ frame-
work provides the just-in-time activation (JITA) service,

3

where a method on an object is called when it is activated
or deactivated, even though the object is not actually taken
out of memory. Through this call, application developers
can handle the activation and deactivation logic. However,
this approach is not directly applicable to our purposes, as it
is useful for improved performance and resource utilization
of service-like objects, whereas it is inapplicable to data ob-
jects.

Thus, we have considered the following alternative ap-
proaches to activation:

• Manual activation. The host of the object’s replica
instantiates an instance of the object using the new
keyword. Then, it ensures that the instance is avail-
able via .NET Remoting through the use of the
RemotingServices.Marshalmethod. Also, the
host process must notify the replication manager of the
new replica, and associate it with a logical object.

• Interception of IConstructionCallMessage.
For client-activated objects, the invoca-
tion chain interceptors can intercept an
IConstructionCallMessage, create the
instance of an object (or fetch it from a cache), and
return the result.

So far, we have been working on the first approach, mainly
due to its simplicity. The second approach will be pursued
later on to relieve the application developers from having
to create replicas by themselves and register them with the
replication manager.

3.7. Point-to-point communication

Invocation logic and parts of the replication logic (e.g.,
the reconciliation phase in the primary-per-partition pro-
tocol) require point-to-point communication. To evaluate
whether we should use the group communication toolkit
Spread even for point-to-point messages, we have compared
the execution time of a .NET Remoting call with a message
transfer using Spread. The .NET Remoting call was issued
as call by value, i.e., the remote object was transferred from
one machine to the other. Since a .NET Remoting call re-
quires two message transfers (invocation and return), equiv-
alent behavior has been achieved by acknowledging the re-
ceipt of each Spread message.

The measurements were conducted on a 100MBit
switched network on two machines (3GHz, 1024MB RAM,
Windows XP SP2). Thousand test iterations have been per-
formed with different message sizes. The average transfer
times, given in ms in the below figure, show that - inde-
pendent of the message size - .NET Remoting using the bi-
nary formatter over TCP is fastest but Spread is still faster
than .NET Remoting using the SOAP formatter over HTTP.

Hence, we have used the first variant in our replication mid-
dleware for point-to-point calls.

Point-to-point communication

1

10

100

1000

100 1000 10000 100000 1000000
message size [Byte]

av
er

ag
e

tr
an

sf
er

 ti
m

e
[m

s]

Remoting
HTTP/SOAP
Spread

Remoting
TCP/Binary

Figure 2. Spread vs. .NET Remoting

4. Related work

Replication has been used in several middleware sys-
tems for distributed objects. However, most of the re-
search projects have been focused on CORBA (Common
Object Request Broker Architecture) [23] or J2EE middle-
ware [24].

Seidmann [22] implemented object replication in .NET
environments; however, in the context of a distributed
shared memory, while we focus on a flexible replication
middleware for partitioned environments.

Reiser et al. [25] developed a framework that offers three
forms of replication: First, a load-balancing algorithm for
read requests (based on a round-robin or random selection
strategy) has been implemented. Second, active replica-
tion using .NET Remoting has been implemented. How-
ever, this approach is only suitable for stateless objects or
objects that are not accessed by more than one client simul-
taneously since total order of the invocations is not guaran-
teed. The third variant is comparable to our approach since
it implements active replication using the GCT [15] group
communication toolkit. However, in contrast to our frame-
work, it is not targeted to partitioned environments. Further-
more, beyond traditional replication, our framework allows
enhancing availability even more by trading data integrity
for availability.

5. Conclusions and future work

We presented the lessons we have learned during design
and implementation of a middleware architecture that of-
fers object-level replication in .NET environments. First of
all, we recommend to use an existing group communication

4

toolkit for reliable group communication in .NET environ-
ments. Among the variety of toolkits we have considered,
Spread, Esemble, and GCT offer C# APIs. Furthermore, we
favor the mechanisms provided by .NET Remoting for in-
terception of method invocations (compared with a custom
invocation API or AOP toolkits). However, a custom imple-
mentation of a naming service is more appropriate than to
use Active Directory. Finally, we compared .NET Remot-
ing with Spread for point-to-point communication. .NET
Remoting using a binary formatter over TCP is faster than
Spread - independent of the message size.

Future work includes support of transactions and imple-
mentation of further replication protocols.

6. Acknowledgments

This work has been partially funded by the European
Community under the FP6 IST project DeDiSys (De-
pendable Distributed Systems, contract number 004152,
http://www.dedisys.org).

We thank Almir Kazazic for many in-depth discussions
about our solution.

References

[1] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg.
The primary-backup approach. In S.J. Mullender, editor,
Distributed systems, chapter 8. ACM Press, Addison-Wesley,
2nd edition.

[2] D.K. Gifford. Weighted voting for replicated data. In SOSP
’79: Proc. of the seventh ACM symposium on Operating sys-
tems principles, pages 150–162, 1979.

[3] J. Osrael, L. Froihofer, K.M. Goeschka, S. Beyer,
P. Galdámez, , and F. Muñoz. A system architecture for en-
hanced availability of tightly coupled distributed systems. In
Proc. of 1st Int. Conf. on Availability, Reliability, and Secu-
rity. IEEE, 2006.

[4] K. Zagar. Fault tolerance scenarios in control engineering.
In P. Cunningham and M. Cunningham, editors, Innovation
and the Knowledge Economy - Issues, Applications, Case
Studies, volume 2, pages 1389–1395. IOS Press, 2005.

[5] R. Smeikal and K.M. Goeschka. Fault-tolerance in a dis-
tributed management system: a case study. In ICSE ’03:
Proc. of the 25th Int’l Conf. on Software Engineering, pages
478–483. IEEE CS, 2003.

[6] K.M. Goeschka and R. Smeikal. Using replication for in-
creased availability of a distributed telecommunication man-
agement system. e&i, 121(5):187–193, 2004.

[7] J. Osrael, L. Froihofer, H. Kuenig, and K.M. Goeschka. Sce-
narios for increasing availability by relaxing data integrity.
In P. Cunningham and M. Cunningham, editors, Innovation
and the Knowledge Economy - Issues, Applications, Case
Studies, volume 2, pages 1396–1403. IOS Press, 2005.

[8] F. Cristian. Understanding fault-tolerant distributed systems.
Commun. ACM, 34(2), 1991.

[9] L. Froihofer, J. Osrael, and K.M. Goeschka. Trading in-
tegrity for availability by means of explicit runtime con-
straints. In Proc. 30th Int. Computer Software and Appli-
cations Conference (COMPSAC’06). IEEE CS, 2006.

[10] G. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: a comprehensive study. ACM Comput.
Surv., 33(4):427–469, 2001.

[11] H. Miranda, A. Pinto, and L. Rodrigues. Appia: A flexible
protocol kernel supporting multiple coordinated channels. In
Proc. of the 21st Int. Conf. on Distributed Computing Sys-
tems, page 707. IEEE CS, 2001.

[12] J. Stanton Y. Amir, C. Danilov. A low latency, loss tolerant
architecture and protocol for wide area group communica-
tion. In Proc. of The Int. Conf. on Dependable Systems and
Networks, pages 327–336. IEEE, 2000.

[13] M. Hayden. The Ensemble System. PhD thesis, Cornell Uni-
versity, 1998.

[14] Jgroups project. http://www.jgroups.org.

[15] Gct project. http://www.smartlab.cis.strath.ac.uk/
Projects/GCTProject/GCTProject.html.

[16] S. Beyer, A. Sánchez, P. Galdámez, and F. Muñoz-Escoi.
Dedisys lite: An environment for evaluating replication pro-
tocols in partitionable distributed object systems. In Proc.
of the 1st Int. Conf. on Availability, Reliability and Security.
IEEE CS, 2006.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[18] G. Kiczales. Aspect-oriented programming. ACM Comput.
Surv., 28(4es):154, 1996.

[19] Aspect#. http://www.castleproject.org/index.php/ Aspect-
Sharp.

[20] Runtime assembly instrumentation library (rail).
http://rail.dei.uc.pt/.

[21] Aspectdng. http://www.dotnetguru.biz/aspectdng/.

[22] T. Seidmann. Distributed shared memory using the .net
framework. In Proc. of the 3rd IEEE/ACM Int. Symp. on
Cluster Computing and the Grid, pages 457–462, 2003.

[23] Object Management Group (OMG). Common Object Re-
quest Broker Architecture: Core Specification, v3.0.3, 2004.

[24] Ö. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuck-
ovic, and H. Wu. A framework for prototyping j2ee replica-
tion algorithms. In On the Move to Meaningful Internet Sys-
tems 2004: CoopIS, DOA, and ODBASE, pages 1413–1426.
Springer Verlag, 2004.

[25] H.P. Reiser, M.J. Danel, and F.J. Hauck. A flexible repli-
cation framework for scalable and reliable .net services. In
Proc. of the IADIS Int. Conf. on Applied Computing, vol-
ume 1, pages 161–169, 2005.

5

