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Abstract

Integrity is a dependability attribute partially ensured
through runtime validation of integrity constraints. A
wide range of different constraint validation approaches
exists—ranging from simple if conditions over explicit
constraint validation methods and contract specifications
to constraints as first class runtime entities of an applica-
tion. However, increased support for explicitness and flex-
ibility often comes at the price of increased performance
costs. To address this issue, we contribute with an overview
and evaluation of different constraint validation approaches
for the Java programming language with respect to imple-
mentation, maintainability and performance. Our results
show that the benefits of some of the more advanced ap-
proaches are certainly worth their costs by introducing a
runtime overhead of only two to ten times the runtime of the
fastest approach while other approaches introduce runtime
overheads of more than 100, which might be simply too slow
in certain applications.

1. Introduction

Constraint validation is one of the most essential tasks
of a system to ensure integrity—an important attribute of
dependability and security [1]. The integrity constraints
are defined according to an application’s requirements and
explicitly stated (and probably negotiated with stakehold-
ers) during the requirements analysis phase. Consequently,
they represent a subset of an application’s requirements that
should be ensured by the implementation. Being typically
stated only informally in the requirements analysis phase,
e.g., written down in natural language, the constraints are
often more formally described and attached to the applica-
tion model in the design phase. The Unified Modeling Lan-
guage (UML), for example, provides the Object Constraint

Language (OCL) to explicitly specify constraints—in addi-
tion to the possibility to already express some constraints,
e.g., cardinality or XOR, in the graphical notation of UML.

In contrast, the constraints are most often no longer ex-
plicitly available in a system’s implementation, i.e., the con-
straint validation code is often tangled with code for the
business logic. For some applications, this might be a rea-
sonable or satisfying approach. However, just following
the simple approach to use if statements to validate con-
straints, for example, often turns out not to be the best so-
lution due to several reasons: (i) A single constraint might
have to be checked in different places in the program, which
might lead to inconsistent implementations of the same
constraint throughout the implementation code. This also
makes it difficult to verify that the constraints specified dur-
ing system analysis and design have actually found their
way into the implementation. (ii) Furthermore, constraints
might also describe contracts between different system en-
tities. Unfortunately, an implicit constraint implementation
does not support this design-by-contract principle [13]. (iii)
Some systems might even be more demanding by requir-
ing explicit runtime handling of integrity constraints, e.g.,
to support object versioning [6] or adaptive dependability
by (temporarily) relaxing integrity requirements [5].

Several constraint validation techniques for the Java pro-
gramming language have been developed in the past. Most
of these techniques are inspired by the way constraints are
integrated in the Eiffel programming language—by build-
ing upon the design-by-contract principle. While this prin-
ciple has a strong focus on the detection of contract viola-
tions between producers and users of a certain piece of code,
e.g, between the writer and the caller of a method, other
approaches focus on how system integrity can be achieved
via validation of integrity constraints. Besides this slightly
different focus, both approaches aim at improved system
dependability through runtime constraint validation. Each
of these constraint validation techniques has its advantages
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and disadvantages. Increasing the explicitness and flexibil-
ity of constraint handling and enforcement generally intro-
duces runtime overheads. Motivated by these considera-
tions and our requirement for explicit runtime handling of
constraints to support adaptive dependability [5], we con-
tribute with an overview and evaluation of different con-
straint validation approaches in Java.

Paper overview. Section 2 provides an overview of dif-
ferent constraint validation approaches in Java. In Section 3
we discuss some advantages and disadvantages of the ap-
proaches with respect to implementation and maintainabil-
ity. Section 4 provides a performance evaluation and Sec-
tion 5 provides an overview of related work. Finally, we
conclude our paper and identify future research challenges
in Section 6.

2. Constraint implementation

Integrity constraints are primarily stated in the way of
pre- and postconditions and invariant constraints [13]. Pre-
conditions are bound to methods and have to be satisfied
before a method is invoked. Postconditions are also bound
to methods and have to be satisfied when the method re-
turns. Invariant constraints are bound to the context of a
class. However, the point in time of when to check (trig-
ger point) invariant constraints is not standardized. Differ-
ent trigger points are possible, e.g., check before and/or af-
ter the invocation of public or all methods of the class for
which the invariant is defined. However, an invariant con-
straint has to be checked at least after a call to a method that
may lead to a violation of the constraint. To unify this is-
sue and make our performance evaluations comparable, we
check invariant constraints before and after the invocation
of public methods of our reference application—complying
with design-by-contract in the way that if and only if an
invariant holds before a public method invocation, it must
also hold after the method invocation.

This section provides an introduction to different con-
straint validation approaches for Java. We start from the
simple approach of handcrafted constraints and continue to
more flexible approaches such as constraint code genera-
tion and explicit runtime constraints. While this section
will shortly describe how each approach is performed, sec-
tions 3 and 4 will discuss their advantages and disadvan-
tages with respect to implementation, maintainability, and
performance.

2.1. Handcrafted constraints

The most simple approach to implement constraint
checking in Java is to tangle the constraint checking code
with other code, e.g., for the business logic. This ap-
proach does not require any formal specification of con-

straints as the transformation from the integrity requirement
to the constraint implementation has to be performed by
the programmer. Generally, the result is one or more if-
statements to check a certain condition and act according
to whether these statements are true or false. A source
code example for this approach is provided in Listing 1.

Listing 1. Simple constraint implementation
c l a s s A {

void someMethod ( ) {
i f ( ( ( . . . ) OR ( . . . ) ) AND ( . . . ) ) {

/ / b u s i n e s s l o g i c code
} e l s e i f ( ! . . . ) {

throw SomeExcept ion ( ) ;

} e l s e {
i f ( . . . ) {

/ / e x c e p t i o n h a n d l i n g code
p r i n t E r r o r M e s s a g e ( . . . ) ;

} e l s e {
/ / b u s i n e s s l o g i c c o n t i n u e d

}
}
/ / f u r t h e r b u s i n e s s l o g i c

}
}

2.2. Code instrumentation

Code instrumentation refers to injecting automatically
generated code into a piece of original code, e.g., to add
some additional functionality to the existing code. With
respect to Java, we differentiate between source code and
byte code instrumentation, depending on whether the Java
sources are instrumented with Java code before compilation
(i.e., pre-compiler approaches) or byte code is instrumented
with byte code after the Java sources are already compiled.
Within this section, we focus on source code instrumenta-
tion and will discuss differences to byte code instrumenta-
tion at the end of Section 3.3.

However, common to both approaches is the requirement
that the injected code is generated according to constraints
specified in a constraint language known by a certain tool.
Generally, tools use either UML class models paired with
OCL constraints [19, 21], constraints defined within Java
comments, or methods with names according to naming
conventions. The languages for constraint specification in
the latter cases range from Java code [8] over OCL and
OCL-like expressions [10] to tool-specific constraint lan-
guages [12]. For source code instrumentation, the two pri-
mary approaches are in-place code injection and wrapper-
based validation:

In-place validation code. This approach injects code for
constraint checks directly at the place where the validation
should be performed, e.g., within the performed method.
If a constraint affects several methods of possibly different



objects, constraint checking code for the same constraint is
injected at any place where constraint checking is required.
This approach is illustrated in Listing 2. An example for
this approach is the iContract tool [10].

Listing 2. In-place code injection
p u b l i c i n t coun tCha r ( char c ) {

/ /−−> code f o r v a l i d a t i o n o f i n v a r i a n t
/ / c o n s t r a i n t s and p r e c o n d i t i o n s
/ / BEGIN o r i g i n a l code
i n t r e s u l t = 0 ;

char [ ] c h a r s = t o C h a r A r r a y ( ) ;

f o r ( i n t i =0 ; i<c h a r s . l e n g t h ; i ++) {
i f ( c h a r s [ i ] == c ) r e s u l t ++;

}
/ / END o r i g i n a l code
/ /−−> code f o r v a l i d a t i o n o f i n v a r i a n t
/ / c o n s t r a i n t s and p o s t c o n d i t i o n s
re turn r e s u l t ;

}

Wrapper based constraint validation. In this case,
methods restricted by constraints are wrapped and the
constraint validation code is contained in the wrapper
method. Generally, the original method is renamed
and only called via the wrapper method. For example,
the original method countChar would be renamed to
countChar wrapped and the wrapper method would be
named countChar, see Listing 3. Consequently, calls
to countChar execute the wrapper method including the
constraint validation code. A typical example for this ap-
proach is the Dresden OCL toolkit [21].

Listing 3. Wrapper-based validation
p u b l i c i n t coun tCha r ( char c ) {

/ /−−> code f o r v a l i d a t i o n o f i n v a r i a n t
/ / c o n s t r a i n t s and p r e c o n d i t i o n s
/ /−−> C a l l t h e o r i g i n a l method
i n t r e s u l t = coun tCha r wrapped ( c ) ;

/ /−−> code f o r v a l i d a t i o n o f i n v a r i a n t
/ / c o n s t r a i n t s and p o s t c o n d i t i o n s
re turn r e s u l t ;

}

p u b l i c i n t coun tCha r wrapped ( char c ) {
i n t r e s u l t = 0 ;

char [ ] c h a r s = t o C h a r A r r a y ( ) ;

f o r ( i n t i =0 ; i<l e n g t h ( ) ; i ++) {
i f ( c h a r s [ i ] == c ) r e s u l t ++;

}
re turn r e s u l t ;

}

2.3. Compiler-based approaches

Compiler-based approaches build upon a specific Java
compiler that is enhanced with functionality to read con-
straint specifications and integrate the corresponding con-

straint validation mechanisms into the Java byte code. In
contrast to code instrumentation approaches, the transfor-
mation from source code to constraint checking byte-code
is performed in a single step. An example for a compiler-
based approach is the Java Modeling Language (JML) [12].
Listing 4 provides an example for an input to a compiler-
based approach that does not use a custom extension of the
Java programming language.

Listing 4. Compiler-based constraint checks
/∗ ∗
∗ @pre o != n u l l ;
∗ @post s i z e ( ) == s i z e ( ) @pre + 1;
∗ /

p u b l i c vo id add ( O b j e c t o ) { . . . }

2.4. Explicit constraint classes.

Encoding constraint validation code in explicit Java
classes is an approach that completely separates validation
code from, e.g., the code for the business logic. For ex-
ample, the constraint validation code may be contained in
a validate method that is executed with appropriate ar-
guments whenever a certain constraint has to be checked.
This approach requires appropriate trigger mechanisms to
ensure that the validate method is called whenever nec-
essary. Trigger mechanisms include explicit code state-
ments made by the programmer, in-place code generation of
the calls, wrapper-based approaches, and interceptor mech-
anisms discussed in Section 2.5. Explicit constraint classes
are used, for example, in [5, 19]. Listing 5 illustrates this
approach.

Listing 5. Explicit constraint classes
p u b l i c c l a s s E x a m p l e C o n s t r a i n t {

p u b l i c boolean v a l i d a t e ( O b j e c t o ) {
boolean r e s u l t = f a l s e ;

/ /−−> Check t h e c o n s t r a i n t and s e t t h e
/ / r e t u r n v a l u e ‘ ‘ r e s u l t ’ ’ depend ing on
/ / whe ther t h e c o n s t r a i n t i s s a t i s f i e d .
re turn r e s u l t ;

}
}

Constraint repository. Encapsulating the constraint
checking code in separate classes allows for more flex-
ible handling of integrity constraints. For example, all
constraints of an application can be registered within a con-
straint repository. At any point in time, this repository can
be queried for constraints based on different criteria such as
the class of the invoked object or the signature of invoked
methods. Consequently, preconditions, postconditions, and
invariant constraints affected by method invocations can
be queried from the constraint repository. Moreover, using
such a constraint repository allows to add, remove, enable,
and disable integrity constraints even during runtime.



2.5. Interceptor mechanisms

Interceptor mechanisms provide the possibility to inter-
cept different events such as the call to a method. Subse-
quently, the interceptor can perform some actions and con-
tinue or possibly abort the current action, e.g., the method
call. Hence, interceptor mechanisms are an appropriate
mechanism to implement so called “cross-cutting concerns”
such as logging or—in our case—constraint validation. For
constraint validation, one can either implement the con-
straint checking code within the interceptor [20] or use
a generic interceptor that redirects calls, e.g., to explicit
constraint validation classes (Section 2.4). The second
approach can be achieved by combining the interception
mechanism with a constraint repository. Within the follow-
ing paragraphs, we describe the major interceptor mecha-
nisms available for the Java programming language:

Aspect-oriented programming. Aspect-oriented pro-
gramming (AOP) [9] is closely related to code instrumen-
tation as AOP is often achieved through (byte) code in-
strumentation. It follows the programming paradigm of in-
terception and weaving of so called aspects into program
execution. A typical example for the weaving of an as-
pect is to introduce logging functionality to an existing pro-
gram. Today, several tools supporting the AOP program-
ming paradigm already exist (http://aosd.net). Within this
paper, we concentrate on AspectJ and JBoss AOP as two
well-known tools with a significant user base.

Proxy implementations. Since version 1.3, the
Java programming language provides the con-
cept of a proxy implementation for interfaces
(java.lang.reflect.Proxy). If a method is
invoked on the proxy, the registered invocation handler is
notified with details about which method was invoked on
which object with which arguments.

CORBA and EJB interceptors CORBA and Enterprise
JavaBeans (EJB) also provide the possibility to intercept
method invocations as both technologies separate interface
from implementation. Hence, the interceptor mechanisms
of CORBA and EJB can be used as trigger mechanisms for
constraint validation. However, within this paper we con-
centrate on plain Java applications not building upon higher
level specifications.

2.6 Summary

Table 1 summarizes this section with an overview of
the most influential tools supporting constraint validation.
For each tool, we provide how constraints are specified
and which mechanism is used for integration of constraint
checks.

Table 1. Constraint validation tools
Name and
reference

Constraint specifica-
tion

Integration of
constraint checks

Dresden
OCL
toolkit [21]

OCL constraints de-
fined for a UML class
model

Wrapper-based
source code instru-
mentation

Handshake
[4]

Custom language in a
separate file

Runtime byte code
instrumentation on
class load time

iContract
[10]

OCL in custom tags of
Java comments

Source code instru-
mentation

Jass [2] Custom language in
special Java comments

Source code instru-
mentation

jContractor
[8]

Java methods that fol-
low a defined naming
convention

Byte code instru-
mentation by class
loader

JML [12] JML constraints in
Java comments or
separate file

Custom compiler

JMSAssert Custom language in
custom tags of Java
comments

Pre-processor for
standard Java com-
piler, paired with
custom library

Kopi Java
compiler
[11]

Extension of the Java
language with certain
keywords

Custom compiler

USE [17] OCL expressions Runtime interpreta-
tion of OCL con-
straints

3. Implementation and maintainability issues

This section provides a description of implemented con-
straint validation approaches and discusses several issues
with respect to implementation of constraint checks and
maintainability of the resulting code.

3.1. Implemented approaches

For evaluation and comparison of the different constraint
validation approaches, we implemented the following vari-
ants:

• No checks: is an implementation of the application
without any constraint checks.

• Handcrafted constraints: is the case where the con-
straint checks are manually integrated into the applica-
tion according to Section 2.1.

• Dresden OCL Toolkit: is a wrapper-based approach
with tool-generated constraints.

• JML: implements a compiler-based approach with
manually specified constraints.



• AspectJ-Interceptor: is an AOP approach where the
constraint validation code is implemented directly in
the AspectJ aspect specifications.

• AspectJ-Repository: uses explicit constraint classes
and a constraint repository to allow flexible runtime
handling of constraints.

• JBoss-Repository: implements the same as AspectJ-
Repository but uses the JBoss AOP toolkit as intercep-
tion mechanism.

• Java-Proxy: uses the Proxy mechanism of Java as in-
terception mechanism and also makes use of the con-
straint repository to look up affected constraints.

The selection of the different approaches is primarily
motivated by our requirement for explicit runtime con-
straints, e.g., to balance the dependability properties avail-
ability and consistency [5]. Consequently, we evaluate the
benefits and costs of different explicit runtime constraint
checking approaches as well as other constraint checking
approaches with better performance or tool support.

As expected, our performance studies showed a ma-
jor overhead in the repository-based approaches, caused
by searching for affected constraints. Hence, each of the
repository-based approaches is also evaluated with an opti-
mized repository that performs caching of query results. In
this case, a subsequent query for constraints based on the
same criteria reduces to a lookup in a hash table with a key
that combines our search criteria: class, method and con-
straint type.

3.2. Handcrafted constraints

With handcrafted constraint checks, the programmer re-
tains full control over where, when and what is to be
checked and how to react on violations. However, the pro-
grammer is also responsible for accurately documenting
these checks and to update them if the integrity require-
ments of an application change. Unfortunately, this tends to
lead to inconsistencies between application requirements,
documentation, and implementation of constraints. More-
over, the same constraint might be implemented differently
(and inconsistently) at several places within an application.

3.3. Code instrumentation

The main advantage of code instrumentation approaches
is that they allow a separation of business logic code from
constraint checking code at design and implementation
level. The main disadvantage is that the original code is
changed through code injection. Several works [18, 21] al-
ready investigated constraint implementation by using code
instrumentation and found that code instrumentation ap-
proaches generally suffer from different problems we can
summarize as follows:

Return statement: The code for checking postcondi-
tions and invariant constraints must be executed before the
return statement. Hence, the result must be available be-
fore the method actually returns. This poses problems when
the result to be computed is declared within the return state-
ment itself, e.g., return 2*x.

Code duplication: Due to control flow issues, there may
be several return points for a method. Therefore, it is nec-
essary to insert the code for checking postconditions and
invariants at several points in the same method. Moreover,
it could be necessary that constraints have to be checked in
more than one method. This leads to even more duplication
of constraint checking code.

Reachable point: For methods of return type void it has
to be decided whether it is sufficient to only insert the code
for checking postconditions at the end of the method. This
depends on whether the end is a reachable point of code—
or more specifically, executed for every method invocation.
Hence, complex control flow analysis is required.

Super statement: If a subclass calls the constructor of
a superclass (by invoking super()) in Java, the com-
piler allows no other statements in advance. Therefore,
special measures must be taken to implement checks for
preconditions and class invariants. Moreover, wrapper-
based approaches may lead to infinite loops. For ex-
ample, if a method m wrapped() of a subclass calls
super.m(), m() of the superclass subsequently will—
due to polymorphism—call m wrapped() of the subclass
again, thereby introducing an infinite loop. Consequently,
appropriate measures, such as adding the class name to the
name of the wrapped function, have to be taken.

Pollution of application code: The instrumented code is
cluttered with constraint checking statements.

Shift of line numbers: Line numbers shown in compiler
messages or stack traces of exceptions point to the modi-
fied source code instead of the original code. Hence, the
mapping of the line numbers from modified code to origi-
nal code has to be performed manually by the developer.

Black-box instrumentation: The developer loses control
over code changes, as they happen in a black box fashion.
This may further lead to unexpected behaviour and perfor-
mance losses during runtime of the program.

Debugging: Debugging becomes more difficult as stan-
dard debuggers will only allow the debugging of the tangled
instrumented source code. The shift of line numbers issue
described above makes debugging even more complex.

Naming conflicts: Conflicts in the names of, for example,
methods or variables must be prevented between the origi-
nal code and the generated code, since the generated code
may define variables or helper methods.

Source code vs. byte code instrumentation. The com-
parison of source code instrumentation and byte code in-
strumentation shows that the instrumentation method has a
major impact on the generated code fragments:



Source code pre-processing: translates the constraint
definitions into standard Java source code which is directly
inserted into the original source code. This leads to highly
tangled code, which is hard to change and maintain without
original sources and constraint definitions.

Byte code post-processing: translates the constraint defi-
nitions to Java byte code and injects the generated code into
the existing byte code after compilation—either before run-
time or dynamically during runtime through the usage of a
custom class loader. In any case, this preserves the original
source code. Hence, the developer does not recognize any
changes to the code, but also has no control over the pos-
sibly dynamically instrumented code. This leads to diffi-
culties in debugging, possibly unexpected behaviour during
runtime, and a performance loss because of the constraint
checks and—if performed at runtime—the dynamic code
instrumentation through the class loader. However, some
issues can be solved by byte code instrumentation com-
pared to source-code instrumentation. For example, on byte
code level, the Java Virtual Machine allows arbitrary state-
ments in advance of calling the superclass constructor. This
solves the problem of code insertion before a super()
statement. Another example is that in byte code the compu-
tation of variables is separated from control flow statements
(branching statements). Branching statements denote the
only exit points of methods. Consequently, the issues of in-
line return statements and the determination of insertion
points for postconditions are easier to address.

3.4. Compiler-based approaches

Custom compilers are often used if the constraint def-
initions are not provided within Java comments or Java
annotations, i.e., the constraint-enhanced programs use an
extended grammar of the standard Java language. In this
case, the program code is no longer compilable with-
out the custom compiler—or at least a compiler pre-
processor—introducing a dependency on the vendor of the
(pre-)compiler. Using a pre-processor falls into the cate-
gory of code-instrumentation approaches described in Sec-
tion 3.3 and hence will not be addressed here. Compiler-
based approaches perform a direct transformation from
source code to Java byte code and integrate the constraint
checks during this transformation. As the example of JML
shows, compiler-based approaches are also used without ex-
tensions to the Java language. While this allows to compile
the code with a standard Java compiler, it still does not re-
move the dependency on the custom compiler for constraint
validation.

Generally, the principle that constraint checks are gener-
ated out of separate constraint statements is similar to code
instrumentation above. Hence, some of the issues described
in Section 3.3, e.g., black-box instrumentation, debugging,
and naming conflicts, also apply to this approach.

3.5. Constraints encoded in interceptors

Within our studies, we used constraints encoded as as-
pects in AspectJ as representative for constraints encoded
in interceptors. No tool support was available for this ap-
proach. Hence, we had to manually code the constraints as
AspectJ aspects. This already provides a clear separation
between constraint validation code and code for the busi-
ness logic. While the code for the business logic remains in
*.java files, the code for constraint checking is contained in
separate *.aj files, defining the constraint checks as AspectJ
aspects.

One disadvantage of this approach is the strong coupling
of the aspects to the base code. Pointcut definitions spec-
ify the interception points for constraint validation. If these
definitions exactly match specific method signatures, they
are very susceptible to changes in the underlying base code
in which case the pointcut definitions have to be changed as
well. Refactoring support of Integrated Development En-
vironments (IDEs) could provide support here to improve
productivity and reduce errors. General pointcut definitions
that match multiple method signatures, e.g., by using wild-
cards, may on the one hand still be matching after some
parts of the original method signature in the underlying code
have been changed, but on the other hand may be triggered
even when not intended. Such errors are difficult to detect
and fix, especially in the context of constraint checking as
a failing constraint indicates that the reason is a problem in
the base code, rather than a mismatch in the pointcut defini-
tions.

3.6. Explicit constraint classes

Encapsulating the constraint checking code in explicit
constraint classes allows for explicit runtime handling of in-
tegrity constraints. The degree of flexibility, however, heav-
ily depends on the triggering mechanism for constraint val-
idation. While manual integration or code instrumentation
are feasible mechanisms to trigger constraint validation, we
focused on the combination of a constraint repository paired
with a generic interceptor mechanism. This combination
allows for a maximum of flexibility, e.g., to add, remove,
enable, or disable integrity constraints during runtime of
a system—which would require code modification and re-
compilation in the other constraint validation approaches.
However, this flexibility comes at the price of decreased
performance compared to other approaches that manually
integrate constraints.

4. Performance studies

Our application scenario for the performance evaluation
is the management of projects and employees within a com-
pany. Employees participate in projects and perform a cer-
tain amount of work on a daily basis. Within this model,



several restrictions apply, e.g., an employee can only han-
dle a certain amount of workload. The application con-
tains a mixture of preconditions, postconditions and invari-
ant constraints—78 constraints in total.

4.1. Comparison conditions

In order to allow for comparison of the different ap-
proaches, the validation of integrity constraints was per-
formed in a uniform way. More specifically, we applied
the following principles:

Constraint scope: Preconditions, postconditions and in-
variants only constrain public methods. Public constructors
are constrained by invariants, private constructors remain
unchecked.

Constraint checking: Constraints are checked before
(preconditions) or after (postconditions) the actual code of
the guarded method is executed. This also holds true for
nested method calls. Invariants are immediately checked
after public constructor calls and before and after public
methods.

Constraint inheritance: In order to address object sub-
stitution and behavioral subtyping, constraints of extended
superclasses or implemented interfaces are also taken into
account. Preconditions of superclasses and interfaces are
concatenated with the logical OR operator. Postconditions
and invariants are concatenated with the logical AND oper-
ator [3].

Error handling: To exclude runtime differences due to
different treatment of constraint violations, the measured
application scenario does not violate any integrity con-
straints. However, in other scenarios we ensured that all the
approaches actually check the same number of constraints
and also correctly detect constraint violations.

4.2. Results

To measure the performance of the individual ap-
proaches, we implemented some use cases within our ap-
plication scenario and let them run a number of times.
To reduce the effects of environmental noise and just-in-
time (JIT) compilation, we performed 2500 runs of the
same example scenario before we measured another 2500
runs of the example scenario with each constraint valida-
tion approach. Each run triggers 4875 checks of invariants,
1097 checks of postconditions, and 433 checks of precondi-
tions. The constraint repository based approaches intercept
1605 methods and trigger 7677 search operations within the
repository for each run.

2500 runs of the scenario without constraint checks take
125ms to execute on an AMD Athlon XP 2600+ with
512MB of RAM running under Windows XP. The hand-
crafted constraints approach is the fastest version, but al-
ready runs 35 times slower than the same scenario without
constraint checks. However, as this is the fastest approach,

it is the baseline for comparison of the other approaches
with respect to additional overheads. In order to evalu-
ate the additional overheads in detail, we separate the total
runtime into slices. As most of these slices do not contain
constraint checking code, the application without constraint
checks provides the baseline for these comparisons. The
overheads are calculated according to Formula 1.

Overhead =
Runtime for approach

Runtime for baseline
(1)

1.06

7.99
9.54

10.86

1.00
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Figure 1. Fastest approaches

Figure 1 provides an overview of the fastest constraint
validation approaches where the handcrafted constraints ap-
proach provides the baseline. This figure shows that con-
straints integrated as aspects in AspectJ are almost as fast
as handcrafted inline constraints. The overhead introduced
is only 1.06 times the runtime of the handcrafted constraints
approach. The second fastest approach uses JBoss AOP for
invocation interception and an optimized constraint reposi-
tory containing explicit constraint classes. This introduces
a runtime overhead of 7.99. Using a Java proxy with an op-
timized repository runs 9.54 times slower than handcrafted
constraints and AspectJ with an optimized repository shows
an overhead factor of 10.86.

48.03 61.37 70.71
103.17

405.71

1.00
51.00

101.00
151.00
201.00
251.00
301.00
351.00
401.00
451.00

Proxy-Rep JML AspectJ-
Rep

JBossAOP-
Rep

Dresden-
OCL

Figure 2. Slowest approaches

Figure 2 provides a comparison of the slowest constraint
validation approaches where handcrafted constraint checks
again provide the baseline for comparison. The approach
to use the Java proxy mechanism and a non-optimized con-
straint repository requires 48.03 times the runtime of the



handcrafted approach—nearly 4.5 times slower than As-
pectJ with the optimized constraint repository, which was
the slowest approach in Figure 1. After the proxy mech-
anism follows JML requiring 61.37 times the runtime of
handcrafted checks. AspectJ with a non-optimized repos-
itory shows an overhead factor of 70.71 and JBoss AOP
with a non-optimized repository already runs 103.17 times
slower than handcrafted constraint checks. Finally, the
Dresden OCL toolkit with tool-generated constraints shows
a runtime overhead of 405.71 times the runtime of the hand-
crafted approach.

Interestingly, the order of the different interceptor mech-
anisms with respect to performance changes for using an
optimized and a non-optimized constraint repository. While
JBoss AOP is the fastest mechanism with the optimized
repository, followed by the Java proxy and AspectJ, the
Java proxy approach is the fastest mechanism for the non-
optimized repository, followed by AspectJ and JBoss AOP.
This is an unexpected result and our investigations showed
that the interceptor mechanisms affect the runtime differ-
ently, so that the search overhead within the repository is not
a constant factor. However, search overhead is not the only
overhead introduced in these cases. In total, we separate the
overall runtime into five major time slices with respect to
introducing constraint checks by using a repository:

R1 is the net application runtime without constraint
checks

R2 is the overhead introduced through invocation inter-
ception by the different interceptor mechanisms (Java
proxy, AspectJ, and JBoss AOP).

R3 provides the overhead to extract search parameters
based on the information that the interceptor mecha-
nism provide. This includes getting invoked method,
method arguments and/or class of the invoked object.

R4 is the runtime overhead required for searching con-
straints within the constraint repository.

R5 is the overhead introduced by the constraint checks
themselves

Figures 1 and 2 showed a comparison of all approaches
considering the total overhead for constraint checking. Fur-
ther on, we investigate the different runtime slices of the
respective overheads to provide a more in-depth compar-
ison of the constraint repository approaches. For JML and
the Dresden OCL toolkit, we only considered the total over-
head as the methodology is different and cannot reasonably
be fitted to the five runtime slices provided above.

Figure 3 shows the search overhead of the optimized
and non-optimized constraint repository compared to the
application without constraint checks. These versions in-
clude the overheads R2, R3, and R4, but do not check con-
straints (R5). The difference between the optimized and the
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Figure 3. Search overhead (R1+R2+R3+R4)

non-optimized repository is that the runtime overhead R4
is reduced through caching of previous queries. The per-
formance improvements through the optimized constraint
repository reduced the overall runtime by a factor between
13.62 (AspectJ) and 48.16 (JBoss AOP). While we config-
ured all of the interceptor mechanisms not to intercept calls
performed for searching constraints within the repository,
only the Java proxy approach does not modify the Java byte
code. Compared to the Java proxy we see an additional run-
time overhead introduced by the AOP approaches between
1.07 (JBoss AOP with optimized repository) and 2.50 (As-
pectJ with optimized repository).
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Figure 4. Interception overhead (R1+R2)

Figure 4 illustrates the interception overhead introduced
by the different mechanisms. In this case, the intercepted
method invocations were immediately forwarded by the
interceptors to the called method of the object instance.
Hence, the overhead of R1+R2 was compared to R1 (the
plain application). This comparison shows that AspectJ
provides the fastest interception mechanism, requiring 2.38
times the runtime of the plain application. JBoss AOP
shows an overhead factor of 9.25 and the Java proxy re-
quires 28.13 times the runtime of the plain application. As
the Java proxy is part of the Java reflection mechanism and
does nothing more than invoking the intercepted method via
java.lang.reflect.Method.invoke(...), we



primarily attribute this major performance impact to the
Java reflection mechanism.

The performance advantage of AspectJ gained through
quick interception, however, is lost during parameter ex-
traction. While JBoss AOP and the Java proxy mech-
anism already provide access to the called Method via
a java.lang.reflect.Method object, this refer-
ence to the method has to be obtained via costly calls
to Object.getClass().getMethod(...) in As-
pectJ. Hence, the overhead of R1+R2+R3 compared to R1
provides a different order between the interception mecha-
nisms, ranging from an overhead factor of 19.50 for JBoss
AOP over 36.62 for the Java proxy to 98.26 for AspectJ, see
Figure 5.
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Figure 5. Overhead of invocation interception
and parameter extraction for searching the
constraint repository (R1+R2+R3)

5. Related Work

Most related work focuses on constraint validation in the
sense of design-by-contract [13] as introduced by Meyer
for the Eiffel programming language. One focus within
this principle is to decide whether the producer or user of
a certain piece of code violated the contract. This process is
also called the problem of “assigning the blame” for incor-
rect code. Lackner et al. [11] discuss (pre-)compiler-based
approaches supporting design-by-contract in Java. Starting
with an overview of Jass [2], iContract [10], jContractor [8],
and Handshake [4], they finally describe their own support
for design-by-contract in Java through extension of the Java
language with new keywords. Furthermore, they provide
how this approach was integrated into the Kopi Java com-
piler and provide performance studies of their approach and
a comparison with some of the other approaches. In their
studies, the authors experience performance impacts for
contract checking code between 2.22 and 1389.11 times the
runtime of non-contract checking code. Obviously, these
results also have such a wide range of performance impacts
as shown by our studies. Plösch [15] provides further de-
tails and an evaluation with respect to the degree of as-
sertion support of some tools listed in Table 1. However,

these works focus on integrating constraint/contract checks
into Java byte code while our evaluation considers wrapper-
based source-code instrumentation, byte-code instrumenta-
tion as well as interceptor-based approaches to make con-
straints first class runtime entities.

While design-by-contract might be interesting with re-
spect to distributed software development and contracts be-
tween producers and users of code, other works focus on
ensuring system integrity in the sense of considering a con-
straint violation an error that should be treated by correc-
tive measures rather than to view the violation as system
failure [1]. Verheecke et al. [19] describe a tool-supported
approach to encapsulate constraint checks in explicit con-
straint classes, generating skeleton code for application
classes and constraint checking code in constraint classes
based on detailed UML design diagrams annotated with
OCL constraints.

There has also been considerable effort to inte-
grate constraint validation mechanisms into object-oriented
databases. The approaches are similar to what we described
in this paper, ranging from preprocessor-based constraint
integration [7] to also considering constraints as first class
citizens within an object-oriented database [14].

6. Conclusion and future research challenges

Integrity management in software systems has already
been addressed by several researchers and a range of pos-
sible solutions exists. However, the selection of an appro-
priate solution for a specific system will also include im-
plementation, maintainability, and performance consider-
ations. Within this paper we described several constraint
validation approaches and contributed by discussing advan-
tages and disadvantages of the different approaches includ-
ing performance issues.

To sum up, handcrafted constraints showed to be the
fastest approach. However, to only separate constraints
from, e.g., the code for the business logic, using constraints
encoded as aspects in AspectJ is a good choice, requiring
only 1.06 times the runtime of handcrafted constraints. If
flexible runtime handling of constraints is required, e.g., if
it should be possible to add, remove, enable, and/or dis-
able constraints during runtime, an optimized constraint
repository paired with the JBoss AOP toolkit as intercep-
tor mechanism should be envisaged. With respect to per-
formance, the automatically generated constraint checks by
JML and especially the Dresden OCL toolkit were part of
the slower approaches. However, JML provides several
tools to thoroughly support the design-by-contract princi-
ple. If one is only interested in stating constraints, a thor-
ough support of design-by-contract, and it is acceptable that
java.lang.Errors are thrown in case of contract vio-
lations, JML is certainly a good choice. The Java annotation
mechanism introduced in version 5.0 would be an alterna-
tive to the definition of constraints/contracts in comments,



allowing also runtime access to the constraints. This ap-
proach, however, has not yet been exploited.

Today, we are often thinking in terms of strict con-
sistency and that any threats to integrity—and hence,
dependability—have to be avoided and undesirable effects
have to be removed or repaired immediately. While this
is acceptable for small-scale and tightly-coupled systems,
we currently observe a trend towards large-scale integration
(systems of systems) and pervasive computing, leading to
ultra-large-scale systems [16] in the future. Dependability
will be an important aspect of these systems—and integrity
management will be part of it. However, strict consis-
tency is not affordable in large- to ultra-large-scale systems.
Hence, interesting future research challenges will arise from
a transition of thinking in terms of consistency manage-
ment to thinking in terms of inconsistency management.
While this paper focused on “constraints-in-the-small” that
are part of software design and programming languages,
we will have to think of “constraints-in-the-large” to ad-
dress the challenges of the future. Such constraints will
most probably be fuzzy, imprecise, and potentially require
negotiation to decide whether constraints are fulfilled. An
analogy that can guide our way in this direction is to view
“constraints-in-the-large” as kind of laws, often being pre-
cise enough, but sometimes requiring court decisions (nego-
tiations) to decide whether something was actually lawful—
or not.
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