
Availability and Performance of the Adaptive Voting Replication

Protocol

Johannes Osrael1, Lorenz Froihofer1, Norbert Chlaupek2, and Karl M. Goeschka1

1Vienna University of Technology, Argentinierstrasse 8/184-1, 1040 Vienna, Austria,

{johannes.osrael|lorenz.froihofer|karl.goeschka}@tuwien.ac.at
2University of Applied Sciences fh-campus wien, Daumegasse 5, 1100 Vienna, Austria, chlaupek@fh-campuswien.ac.at

Abstract

Replication is used to enhance availability and per-
formance in distributed systems. Replica consistency
and data integrity (constraint consistency) are correct-
ness criteria for data-centric distributed systems. If
consistency needs to be ensured all time, such systems
soon become (partially) unavailable if node and link
failures occur. However, some applications exist (e.g.,
in control engineering) where consistency can be tem-
porarily relaxed during degradation in order to achieve
higher availability. Recently we proposed Adaptive Vot-
ing (AV), a novel replication protocol based on tradi-
tional quorum consensus (voting) that allows the con-
figuration of this trade-off. AV allows non-critical op-
erations (that cannot violate critical constraints) even
if no quorum exists. Since this might impose replica
conflicts and data integrity violations, different recon-
ciliation policies are needed to re-establish correctness
at repair time.
The contribution of this paper is two-fold: First,
we present an availability analysis of AV. Second,
we present performance measurements of AV from
our .NET-based proof-of-concept implementation. The
availability analysis shows that AV provides better
availability than traditional voting if (i) some data in-
tegrity constraints of the system are relaxable and (ii)
reconciliation time is shorter than degradation time.
The performance results indicate that a read-one/write-
all configuration of AV is fastest for write-operations
that involve checking of inter-object constraints and
thus implicitly include read operations.

1 Introduction

Data-centric applications are considered as constraint
consistent if all data integrity constraints are satisfied.
Examples for data integrity constraints are value con-
straints, relationship constraints (cardinality, XOR),
and uniqueness constraints. Replication, the process
of maintaining different copies of an entity (e.g., ob-
ject, data item), is the primary means to achieve high
availability in a distributed system.

If strict constraint consistency has to be ensured all
the time in a distributed system with replicated entities
- even in the presence of failures - the system becomes
(at least partially1) unavailable during degraded situ-
ations (node or link failures): Neither potentially con-
flicting updates on replicas in different partitions nor
updates that possibly violate data integrity constraints
are allowed.

However, some applications exist where consistency
can be temporarily relaxed in order to achieve higher
availability. Traditional replication protocols do not
support the balancing between these two properties.
Thus, we proposed a novel replication protocol called
Adaptive Voting (AV) [3] that allows to configure the
trade-off between availability and data integrity. AV is
based on the traditional voting scheme [2] but allows
non-critical operations even if no quorum exists. AV
offers different policies to re-establish correctness when
the failures are repaired.

Applications where AV can be used are for exam-
ple the Alarm Tracking System (ATS) [4] and the Ad-
vanced Control System (ACS) [5]. The ACS will be

1Even if a majority partition or more generally - a quorum -
exists [1, 2], significant parts of the system become unavailable.

1

froihofer
Textfeld
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This is the author's version. The original publication is available at: http://dx.doi.org/10.1109/ARES.2007.50

used as control system for the Atacama Large Millime-
ter Array radio telescope and is already widely used
in the astronomy instrumentation control community.
The ATS is based on a workflow management system
and used for railway administration.

In this paper, our contributions are (i) an analysis
of the availability of AV in comparison with traditional
voting and (ii) an experimental evaluation of our .NET-
based proof-of-concept implementation of AV.

Paper Overview Our system model is introduced in
Sect. 2. Section 3 briefly discusses traditional voting,
before we introduce the AV protocol in Sect. 4. Sec-
tion 5 provides a comparison of the availability of tradi-
tional voting with AV. Section 6 presents performance
measurements from our proof-of-concept implementa-
tion of AV. Our work is compared to related work in
Sect. 7 before we conclude in Sect. 8.

2 System Model

We focus on tightly-coupled, data-centric, object-
oriented distributed systems with up to about 30 server
nodes2 and an arbitrary number of client nodes. Server
nodes host objects which are replicated to other server
nodes in order to achieve fault tolerance. We con-
sider both node and link failures (partitioning), i.e.,
the crash failure [6] model is assumed for nodes and
links may fail by losing but not duplicating or corrupt-
ing messages.

We assume a partially synchronous system, where
clocks are not synchronized, but message time is
bound. A group membership service is assumed in
our system, which provides a single view of the nodes
within a partition, i.e., it is used to detect node and
link failures. Furthermore, we assume the presence of
a group communication service which provides multi-
cast to groups with configurable delivery and ordering
guarantees.

We assume the correctness of the system is expressed
in the form of application-specific data integrity con-
straints, which are defined upon objects that encapsu-
late application data (e.g., Entity Beans in Enterprise
Java Beans terminology). These objects do not contain
business logic and typically correspond to a row in a ta-
ble of a relational database. We assume that read and
write operations on such objects can be distinguished.

Data integrity constraints Not all constraints of
an application are of equal importance [7]. Some have

2This figure stems from our real-world target applications [4,
5].

to be satisfied at any point in time while others might
be relaxed temporarily when failures occur:

Non-tradeable constraints must never be violated.
Thus they cannot be traded for higher availability dur-
ing degradation. Tradeable constraints can be tem-
porarily relaxed during degraded situations.

Intra-object constraints can be evaluated on a sin-
gle (logical) object, e.g. object.attribute < constant.
Inter-object constraints need access to two or more ob-
jects, e.g. object1.attr1 < object2.attr2.

Critical operations affect at least one non-tradeable
constraint while non-critical operations affect only
tradeable constraints.

3 Traditional Voting

In weighted voting [2], a generalization of majority vot-
ing [1], each replica is assigned some number of votes.
Whenever a read or write operation shall be performed,
at least RQ (read quorum) or WQ (write quorum) votes
must be acquired. Let the total number of votes be V.
The following conditions must be satisfied:

RQ + WQ > V (1)

WQ >
V

2
(2)

WQ, RQ, V ∈ N and WQ, RQ ≤ V are assumed3.
Condition (1) prevents read-write conflicts while con-
dition (2) prevents write-write conflicts.

For the sake of simplicity we further assume in this
paper that all replicas have equal votes (i.e., 1) and
each node in the system hosts one replica. Thus, the
total number of votes V becomes the total number of
nodes in the system, denoted as N . We denote this
simplification of weighted voting as traditional voting.

Quorum consensus techniques allow to balance the
cost of read against write operations by adjusting the
sizes of the read and write quorum appropriately. Fur-
thermore, in static quorum schemes (as weighted vot-
ing), where the quorums are not reconfigured in re-
sponse to failures, no intervention is necessary when
network failures are repaired or nodes recover; i.e., fail-
ures are masked.

4 Adaptive Voting

4.1 Key Idea

Traditional voting blocks operations if the quorums
cannot be built. However, as discussed in Sect. 1,

3In this paper, we denote with N all positive natural numbers,
i.e., zero is not included.

2

some systems do not require strict data integrity at all
times, i.e., constraint consistency can be temporarily
relaxed during degraded situations.

Thus, our key idea is to enhance availability of tradi-
tional voting by allowing non-critical operations even
if no quorums exist, i.e., operations are allowed that
may violate tradeable constraints but do not affect non-
tradeable constraints. Furthermore, the new protocol
called Adaptive Voting (AV) [3] allows to re-adjust the
quorums in degraded situations in order to support
the tuning of read against write operations. Since up-
date conflicts and data integrity violations might be in-
troduced, different policies are required to re-establish
replica and constraint consistency after nodes rejoin.
The replica consistency requirement for quorum con-
sensus protocols is that a write quorum of replicas is
consistent. That is, re-establishment of replica consis-
tency means in our protocol that a write quorum of
replicas becomes consistent.

AV distinguishes three modes of operation: normal
mode, degraded mode, and reconciliation mode. The
current mode of the replication protocol depends on
the system state.

AV is in the normal mode when all nodes are reach-
able and all constraints are satisfied, i.e., no partitions
are present and all repair activities (reconciliations) are
finished. AV behaves as the traditional voting proto-
col with the enhancement that invariant constraints are
checked in case of write operations. We denote the quo-
rum sizes of the healthy system as WQH and RQH .
I.e., in normal mode, write operations are performed
on a write quorum WQH of replicas and read opera-
tions on a read quorum RQH . The quorum conditions
RQH +WQH > N and WQH > N

2
must be met in or-

der to prevent write-write and read-write conflicts. N

is the number of nodes in the system, i.e., we assume
all nodes have the same number of votes. Each node
hosts a replica of an object.

The replication protocol switches into the degraded
mode when not all nodes are reachable. Since node
and link failures cannot be distinguished [8], node fail-
ures are treated as network partitions until repair time.
AV allows non-critical operations even if the quorums
of the healthy system cannot be acquired. However,
within a partition, read-write and write-write conflicts
shall be prevented and the tuning of read against write
operations shall be supported. Thus, a quorum scheme
adapted to the size of the partition is applied. Tenta-
tive states are logged. Whether data integrity shall be
enforced within a partition in degraded mode is config-
urable.

AV enters reconciliation mode when two or more
partitions rejoin. The quorums are re-adjusted accord-

ing to the size of the merged partition. The objective of
reconciliation is to re-establish replica and constraint
consistency of the system. AV allows to plug-in differ-
ent reconciliation policies, including strategies that (i)
perform rollbacks in case of integrity violations, (ii) re-
play operations, or (iii) apply application-specific com-
pensation actions, or (iv) combine these approaches.
AV is specifically targeted to systems with the following
characteristics:

• Most of the time all nodes are available and the
system is in a healthy condition.

• Network partitions rarely happen. If they arise,
the system typically splits into two parts. Nodes
do not join/leave arbitrarily as in mobile, ad-hoc
environments.

• Degradation is typically long-lasting. However,
eventually, the nodes either rejoin or are (in case of
a non-recoverable node crash) explicitly removed
from the system, e.g., by maintenance interven-
tion.

• Due to operational conditions (e.g., ownership of
data), conflicts rarely happen.

4.2 Example

Figure 1 gives an example of the behaviour of AV
in normal mode, degraded mode, and reconciliation
mode.

The system consists of 5 nodes. The quorums are
identical for all objects: WQH = 4, RQH = 2. Two
objects, namely object A and object B are replicated.
For the sake of simplicity, the state of the object is rep-
resented by an integer value. Furthermore, to enhance
readability of the figure, we assume the integer value is
always equal to the version number, i.e., a write opera-
tion can increment a or b by 1. The following tradeable
inter-object constraint is defined: A + B < 10. This
constraint has to be fulfilled in the healthy system (nor-
mal mode). For instance, A is updated 3 times and B
is updated twice in the healthy system.

The system degrades into 2 partitions; none of the
partitions contains a write quorum. The group mem-
bership service detects the failure and AV changes to
degraded mode. Since the constraint is tradeable, op-
erations are allowed in all partitions during degraded
mode. Within a partition, update conflicts are avoided
by applying a quorum scheme adapted to the size of
the partition. Thus, the quorums are changed in both
partitions. We denote the reduced quorums in parti-
tion k as WQk and RQk. The size of partition k is
denoted as Pk in Fig. 1. For partition 1, both WQ1

3

N=5
WQH=4
RQH=2

Rejoining

A1

Partitioning

B1 A2 B2 A3 B3 A4 B4 A5 B5

2 2 2 2 1

3 3 3 3 2

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

2,3,4 2,3,4,5 2

3,4 3,4 3,4,5

P1=3
WQ1=2

RQ1=2

P2=2
WQ2=2
RQ2=1

2,5

3

1

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

4

Version List Part. 1:
AP1: 2,3,4,5

BP1: 3,4

Version List Part. 2:
AP2: 1,2

BP2: 2,3,4,5

Partition 1 Partition 2

2,4,5

5 55

4 4 3

5

4

1
N=5

WQH=4
RQH=2

Figure 1. Example behaviour of AV

and RQ1 are set to 2. In partition 1, A is set to 3
first, afterwards to 4, then to 5. Furthermore, B is set
to 4 in partition 1. In partition 2, B is set to 4 first
and then to 5. The states are logged in order to allow
reconciliation at repair time.

Reconciliation starts when two or more partitions re-
join. Again, this is detected by the group membership
service. The quorums are changed to the initial quo-
rums (i.e., WQH and RQH) since all nodes are avail-
able. Afterwards, the version lists of the two partitions
are compared. A has only been updated in partition 1,
thus this version is chosen. B has been updated once
in partition 1 and twice in partition 2. Version 4 of B
is chosen (which has the same value in both partitions)
since version 5 would violate the constraint. Thus, B
is set to 4 on a write quorum WQH of nodes. All ten-
tative versions are discarded. AV returns to normal
mode.

5 Availability Analysis

Jiménez-Peris et al. [9] compare various quorum
schemes with the conventional read-one/write-all-
available (ROWAA) approach in terms of availability,
scalability, and performance. Regarding availability,
they conclude that ROWAA is the best choice for a

wide range of applications if no network partitions oc-
cur. However, if partitions are considered as in our tar-
get applications, ROWAA needs to adopt the primary
partition approach and thus exhibits the same avail-
ability as majority voting [9]. Since majority voting is a
special configuration of traditional voting, we compare
availability of Adaptive Voting with availability of tra-
ditional voting (TV). For both protocols, availability
of read and write operations needs to be distinguished.
Total availability is expressed as

A = qwAw + qrAr (3)

Aw is the write availability of TV and Ar the read
availability for TV. Availability of AV follows the same
scheme. qw and qr express the weight of write and
read operations. E.g., qw = 0.4 denotes that 40% of
all operations are write operations. Thus, qw + qr = 1
must hold. Equal load on all nodes is assumed.

5.1 Traditional Voting

For TV, write/read availability is the sum of the avail-
abilities in each partition. Pi is the size of partition i,
N is the total number of nodes. One replica per node
is assumed. Write operations can only be performed in
at most one partition, while read operations might be

4

performed in several partitions if no partition with a
write quorum exists (see [3]). Thus, the values of Aw

and Ar in this case are as follows:

Aw =

{

max
i

Pi

N
: ∃ Pi ≥ WQH

0 : else
(4)

Ar =
∑

i

Pi

N
∀Pi ≥ RQ (5)

5.2 Adaptive Voting

For AV, non-critical and critical write operations need
to be distinguished. The latter type has the same
availability (denoted as Awcritical

) as write operations
of TV. Availability of the first type — denoted as
Awnon−critical

— is 100% in normal mode and in de-
graded mode while such operations are not allowed in
reconciliation mode.

Awcritical
= Aw (6)

Awnon−critical
=

{

1 : normal mode, degr. mode

0 : reconciliation mode

(7)
Thus, total availability of write operations of AV is
expressed as

Aw = qc Awcritical
+ qnc Awnon−critical

(8)

where qc + qnc = 1 must hold. qnc is the percentage of
non-critical write operations while qc is the percentage
of critical write operations.

Read operations follow a similar scheme: Read oper-
ations on objects affected by non-tradeable constraints
have the same availability as read operations in TV.
Read operations on objects affected by tradeable con-
straints have 100% availability in normal mode and
degraded mode but are blocked during reconciliation
mode.

5.3 Availability over Time

So far, we have analyzed the availability of the sys-
tem in several system states, depending on the number
and sizes of partitions. The analysis shows that AV
provides higher (or at least equal if all constraints are
non-tradeable) availability than TV in degraded mode.
However, availability of AV declines during reconcilia-
tion. Thus, in order to decide when AV is beneficial,
availability needs to be considered over time. We de-
note each ti as a point in time where one or more nodes

leave or rejoin. tds is the point in time where degrada-
tion starts and tre where reconciliation ends. Availabil-
ity is 100% in the healthy system for both protocols;
thus, AV advances TV if

re−1
∑

i=ds

A(ti) · (ti+1 − ti)

tre − tds

>

re−1
∑

i=ds

A(ti) · (ti+1 − ti)

tre − tds

(9)

holds. I.e., AV yields better availability over time if
reconciliation time is short in comparison to degrada-
tion time.

Figure 2 shows how availability might change over
time. The figure is an example that has been chosen
for presentation purposes but does not represent real
measurements.

t

Availability

Traditional Voting

Adaptive Voting

tds tde

1

tre

tds ... degradation start

tde ... degradation end

tre ... reconciliation end

nodes rejoinpartitioning

Figure 2. Availability over time: AV vs. TV

5.4 Influence of the Reconciliation Mode
on Availability

Update conflicts and data integrity violations, which
might be introduced in degraded mode since AV allows
non-critical updates in all partitions, need to be re-
solved in reconciliation mode. Applying a rollback to a
consistent checkpoint would revoke two types of oper-
ations. The first type would have been rejected in nor-
mal (healthy) mode anyway and thus their revocation
would not retrospectively reduce availability. However,
the second type of operations could have been applied
successfully in normal mode either (i) as they are or (ii)
as another operation according to the user’s intention
but based on the healthy context. If we do not want
to reduce availability retrospectively at all, we have to
assume that all update conflicts for the latter type of
operations can be resolved by (i) replaying some opera-
tions or (ii) application-specific compensation actions.
This is what we assume for our availability analysis.

5

The first type of operations, however, can simply be re-
voked/undone. Putting it the other way round: avail-
ability is only reduced retrospectively, if reconciliation
revokes operations that could have been reasonably ap-
plied in the normal (healthy) mode. However, applying
heuristics to cope with reconciliation complexity may
further reduce availability retrospectively, which has to
be investigated in future work.

6 Performance Evaluation

We have implemented AV in the .NET version [10]
of our DeDiSys [11] replication middleware. DeDiSys
is targeted to partitioned environments and allows to
plug-in replication protocols for balancing data in-
tegrity against availability.

The measurements were conducted on a 100MBit
full duplex switched network with up to ten machines
with similar strengths (1-3GHz, 1-3GB RAM, Win-
dows Server 2003). Spread [12] has been used as group
communication toolkit.

For every experiment we performed three (indepen-
dent) iterations of 1000 runs. In order to reduce the
effects of just-in-time compilation (JIT), we performed
1000 runs before each iteration. All figures in this pa-
per show the average values over all iterations and runs.

We have evaluated the performance of Adaptive Vot-
ing using the following simple scenario: The state of
an object a/b of class A/B is represented by an integer
value x. Three constraints exist:

• C1: a.x < constant1

• C2: b.x < constant1

• C3: a.x + b.x < constant2

C1 and C2 are non-tradeable but C3 is tradeable.

6.1 Latency of Operations

Normal mode: Figure 3 compares the latency of
(i) a write operation with constraint checking4, (ii)
a write operation without constraint checking and
(iii) a read operation in normal mode for different
node numbers. Adaptive Voting is configured with a
read-one/write-all (ROWA) strategy in this figure, i.e.
WQ = number of nodes, RQ = 1. AV applies a write
operation locally first and then propagates the whole
object state of around one kilobyte to a write quorum
of replicas. Write operations with constraint checking
are slightly slower than write operations without con-
straint checking since they involve read operations as

4cc = constraint checking

well. However, in case of ROWA, the difference is neg-
ligible since the reads can be performed locally: a local
read requires about five milliseconds. Latency of write
operations directly depends on the number of nodes,
while read operations can always be performed locally
in an ROWA scheme.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

nodes

m
s

write with cc

write without cc

read

Figure 3. ROWA AV in normal mode

Figure 4 shows the latency of these operations for
Majority Adaptive Voting, i.e. WQ =

⌊

N

2

⌋

+ 1 and

RQ =
⌈

N

2

⌉

. Read and write operations without con-
straint checking have similar performance since the
quorums are either identical (for an uneven number
of nodes) or differ only by one (for an even number of
nodes). Write operations with constraint checking are
much slower since they involve remote read operations
as well due to the inter-object constraint C3.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

nodes

m
s

write with cc

write without cc

read

Figure 4. Majority AV in normal mode

ROWA and Majority are the two extreme configu-
rations of the Adaptive Voting protocol. While ROWA
performs best for read operations, Majority is faster for
write operations without constraint checking. Whether
the one or the other strategy is better for write op-

6

erations with constraint checking depends if informa-
tion from remote nodes is required. In our example,
which involves checking the inter-object constraint C3,
ROWA would be the better strategy in terms of per-
formance.

Besides these two extreme configurations, Adaptive
Voting can be configured for other quorum sizes as well.
Figure 5 compares the latency of operations for the
possible quorum sizes if the number of nodes is ten:

0
20
40
60
80

100
120
140
160

ms

write

with cc

write

without

cc

read

W
Q

=
1
0
,

R
Q

=
1

W
Q

=
9

,
R

Q
=

2

W
Q

=
8

,
R

Q
=

3

W
Q

=
7

,
R

Q
=

4

W
Q

=
6

,
R

Q
=

5 WQ=10, RQ=1

WQ=9, RQ=2

WQ=8, RQ=3

WQ=7, RQ=4

WQ=6, RQ=5

Figure 5. Quorum strategies for 10 nodes

In our example with an inter-object constraint, write
operations with constraint checking perform best for
the ROWA strategy since read operations required for
constraint checking can be performed locally. The
performance of write operations (without constraint
checking) becomes slightly better with decreasing WQ.
The trend for read operations is similar with decreasing
RQ. I.e., the figure shows that the performance of read
and write operations (without constraint checking) can
be balanced against each other.

Degraded mode: Read operations and critical write
operations have similar performance in degraded mode
and normal mode for a comparable number of nodes.
Non-critical write operations are slightly slower (for a
comparable number of nodes) in degraded mode since
logging of the operations and/or states is required.

6.2 Performance of Reconciliation

We have measured (see Figure 6) the worst and best
case for the previously used simple scenario. Our sys-
tem splits into two partitions containing three nodes
each. An ROWA scheme is applied in both partitions
and constraints are enforced within the partitions. Ob-
ject a is updated in partition 1, object b is updated in
partition 2. The best case for reconciliation is if the

two partitions can simply be merged without violat-
ing the inter-object constraint. However, if the inter-
object constraint cannot be fulfilled by simply merging
the partitions, one partition is stepwise rolled back till
the constraint is fulfilled — in the worst case to the
initial state before degradation occurred.

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

operations/partition

s

Best case: simple
merging of two partitions

Worst case: complete
rollback of one partition

Figure 6. Example for reconciliation time

Performance of reconciliation is highly application-
specific, i.e., it depends on the constraints, failure pat-
tern, load during degradation, reconciliation policies,
etc.

7 Related Work

Various dynamic quorum schemes (e.g., [13, 14]) have
been proposed which adapt to changes in the system
due to failures. However, in contrast to Adaptive Vot-
ing they are (i) pessimistic, i.e., they preserve replica
consistency despite failures, and (ii) do not consider
data integrity as correctness criterion.

Trading replica consistency for increased availability
has been addressed in distributed object systems such
as [15, 16]. TACT [17] provides a continuous consis-
tency model based on logical consistency units (conits).
The consistency level of each conit is defined using
three application-independent metrics – numerical er-
ror, order error, and staleness. Furthermore, different
solutions for reconciliation of divergent replicas have
been proposed for mobile environments (e.g., [18]).

All of the above replication and reconciliation ap-
proaches have one commonality: In contrast to our
Adaptive Voting approach, they either do not address
constraint consistency explicitly or presume strong
data integrity.

The availability and performance of Adaptive Vot-
ing has not been analyzed in previous work. However,
an excellent comparison of other voting schemes is pre-
sented in [9].

7

8 Conclusions

Adaptive Voting [3] is a novel replication protocol
based on traditional voting, that allows to balance
data integrity against availability in degraded situa-
tions when node and link failures occur. The key idea
of Adaptive Voting is to allow non-critical operations
(that only affect tradeable data integrity constraints)
even if the quorum conditions cannot be met. Different
reconciliation policies have been defined to re-establish
consistency during reconciliation.

The availability analysis presented in this paper
shows that Adaptive Voting provides better availability
than traditional voting if (i) some of the data integrity
constraints can be temporarily relaxed and (ii) recon-
ciliation time is shorter than degradation time. The
performance measurements presented in this paper give
an indication for the choice of the quorum strategy in
terms of performance. As in traditional voting, a read-
one/write-all strategy is best for read-intensive appli-
cations while a Majority strategy is better for write-
intensive applications. However, implicit read opera-
tions caused by constraint checking during a write op-
eration (e.g., in case of inter-object constraints) have
to be taken into account.

9 Acknowledgements

This work has been partially funded by the European
Community under the Framework Programme 6 IST
project DeDiSys (Dependable Distributed Systems,
contract number 004152, http://www.dedisys.org).

References

[1] R.H. Thomas. A majority consensus approach to con-
currency control for multiple copy databases. ACM
Trans. DB Syst., 4(2), 1979.

[2] D.K. Gifford. Weighted voting for replicated data.
In Proc. 7th Symp. on Operating Systems Principles,
pages 150–162. ACM Press, 1979.

[3] J. Osrael, L. Froihofer, M. Gladt, and K.M. Goeschka.
Adaptive voting for balancing data integrity with avail-
ability. In OTM Confed. Int. Workshops Proc., volume
4278 of LNCS, pages 1510–1519. Springer, 2006.

[4] H. Kuenig (ed.). FTNS/EJB - software prototype &
refined design & validation report. Technical Report
D3.2.2, DeDiSys Consortium (www.dedisys.org), 2006.

[5] K. Zagar. Fault tolerance scenarios in control engineer-
ing. In P. Cunningham and M. Cunningham, editors,
Innovation and the Knowledge Economy - Issues, Ap-
plications, Case Studies, volume 2, pages 1389–1395.
IOS Press, 2005.

[6] F. Cristian. Understanding fault-tolerant distributed
systems. Commun. ACM, 34(2), 1991.

[7] Lorenz Froihofer, Johannes Osrael, and Karl M.
Goeschka. Trading integrity for availability by means
of explicit runtime constraints. In Proc. 30th Int. Com-
puter Software and Applications Conference (COMP-
SAC’06), pages 14–17. IEEE CS, 2006.

[8] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossi-
bility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, 1985.

[9] R. Jiménez-Peris, M. Patiño-Mart́ınez, G. Alonso, and
B. Kemme. Are quorums an alternative for data repli-
cation? ACM Trans. DB Syst., 28(3):257–294, 2003.

[10] Johannes Osrael, Lorenz Froihofer, Georg Stoifl, Lu-
cas Weigl, Klemen Zagar, Igor Habjan, and Karl M.
Goeschka. Using replication to build highly available
.NET applications. In Workshop Proc. of the 17th Int.
Conf. on Database and Expert Systems Applications,
pages 385–389. IEEE CS, 2006.

[11] J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer,
P. Galdamez, and F. Munoz. A system architecture
for enhanced availability of tightly coupled distributed
systems. In Proc. 1st Int. Conf. on Availability, Reli-
ability and Security, pages 400–407. IEEE CS, 2006.

[12] Y. Amir, C. Danilov, and J. Stanton. A low latency,
loss tolerant architecture and protocol for wide area
group communication. In Proc. Int. Conf. on Depend-
able Systems and Networks, pages 327–336. IEEE CS,
2000.

[13] S. Jajodia and D. Mutchler. Dynamic voting algo-
rithms for maintaining the consistency of a replicated
database. ACM Trans. DB Syst., 15(2):230–280, 1990.

[14] J. Pâris. Voting with witnesses: A consistency scheme
for replicated files. In Proc. of the 6th Int. Conf. on
Distributed Computing Systems, pages 606–612. IEEE,
1986.

[15] P. Felber and P. Narasimhan. Reconciling replica-
tion and transactions for the end-to-end reliability
of corba applications. In Proc. of Confederated Int’l
Conf. DOA, CoopIS and ODBASE 2002, pages 737–
754. Springer, 2002.

[16] Y. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A.
Karr, P. Rubel, C. Sabnis, W.H. Sanders, R.E.
Schantz, and M. Seri. Aqua: An adaptive architecture
that provides dependable distributed objects. IEEE
Trans. on Computers, 52(1):31–50, Jan. 2003.

[17] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for repli-
cated services. ACM Trans. Comput. Syst., 20(3):239–
282, 2002.

[18] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers,
M.J. Spreitzer, and C.H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated stor-
age system. In Proc. 15th Symp. on Operating Systems
Principles, pages 172–182. ACM Press, 1995.

8

