
A Generic Proxy for Secure
Smart Card-Enabled Web Applications

Guenther Starnberger, Lorenz Froihofer, and Karl M. Goeschka

Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{guenther.starnberger, lorenz.froihofer, karl.goeschka}@tuwien.ac.at

Abstract. Smart cards are commonly used for tasks with high security
requirements such as digital signatures or online banking. However, sys-
tems that Web-enable smart cards often reduce the security and usability
characteristics of the original application, e.g., by forcing users to exe-
cute privileged code on the local terminal (computer) or by insufficient
protection against malware. In this paper we contribute with techniques
to generally Web-enable smart cards and to address the risks of malicious
attacks. In particular, our contributions are: (i) A single generic proxy to
allow a multitude of authorized Web applications to communicate with
existing smart cards and (ii) two security extensions to mitigate the ef-
fects of malware. Overall, we can mitigate the security risks of Web-based
smart card transactions and—at the same time—increase the usability
for users.

Key words: Smart cards, Web applications, Digital signatures, Security

1 Introduction

Despite ongoing efforts to Web-enable smart cards [1] there is still a media dis-
continuity when using smart cards in combination with Web applications, as
smart cards typically require a native helper application as proxy to commu-
nicate with the Web browser. One reason is that the Web security model is
fundamentally different from the smart card security model, leading to potential
security issues even for simple questions such as: “Is a particular Web application
allowed to access a particular smart card?”.

Ongoing research to Web-enable smart cards typically either requires com-
putational capabilities at smart cards higher than the capabilities provided by
today’s smart cards or requires users to install software customized to particular
types of Web applications [2]. In contrast, our generic mapping proxy enables
access from arbitrary Web applications to arbitrary smart cards, while using
access control to protect smart cards from malicious Web applications, without
requiring any on-card software modifications.

However, guarding only against malicious Web applications is not sufficient,
if the local computer is potentially controlled by malware. Consequently, we

froihofer
Textfeld
Copyright for this work was transferred to Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. This is the author's version. The original publication is available at http://www.springerlink.com/



2 Guenther Starnberger et al.

enhance our mapping approach to provide end-to-end security between a user
and a smart card, but this enhancement requires the possibility to adapt on-card
software. In particular, we allow the user to (i) either use the TPM (Trusted
Platform Module) inside her computer or, (ii) alternatively, use a trusted secure
device to secure communication with the smart card.

Summarized, the contributions of our paper are:

– A smart card Web communication protocol that provides a secure way for
Web applications to interact with existing smart cards. Unlike state-of-the-
art technologies, our approach allows any Web application to interact with
any given smart card where communication is allowed based on our autho-
rization and access control mechanisms.

– A first extension to our protocol that uses the Trusted Computing facilities
part of recent PC (Personal Computer) hardware. This allows us to mitigate
the effects of malware on the local computer, but requires modification of
the on-card software.

– A second extension to our protocol that uses QR-TANs (Quick Response
– Transaction Authentication Number) [3] instead of a TPM. Thus, the
security is provided by an external security device instead of a PC.

Section 2 discusses related work before Sect. 3 presents the architecture
and trust model of our application. Sect. 4 introduces our generic Web map-
ping. Sect. 5 extends our mapping approach with TPM-based attestation, while
Sect. 6 provides alternative security measures based on QR-TAN authentication.
Finally, Sect. 7 concludes the paper and provides an outlook on future work.

2 Related Work

In this section we discuss related work to Web-enable smart cards as well as to
improve client-side security.

Web-enabling smart cards. Itoi et al. [4] describe an approach for secure Internet
smart cards that allows users to access remote smart cards over the Internet. In
contrast, we provide the client-side part of a Web application running in a Web
browser with access to smart cards at the local computer. Thus, the security
assumptions and implementation details differ fundamentally. An expired IETF
Internet draft for SmartTP by P. Urien [5] specifies a unique software stack
applicable to different types of smart cards, but—unlike our approach—requires
software support from the smart card. Hence, it is not applicable to legacy cards.
The TLS-Tandem approach [6] seems to use smart cards for access control to
a Web server, while we aim at Web-enabling smart cards to mitigate man-in-
the-middle attacks. Further details on approaches to provide smart cards with
network access can be found in [1].

Improving client-side security. Lu et al. [7] increase security with respect to
online identity theft by placing confidential information inside the smart card
from where it can be transferred to a remote authenticated server. This reduces



A Generic Proxy for Secure Smart Card-Enabled Web Applications 3

the risk of confidential information being captured by malware at a user’s com-
puter. However, it does not guarantee that data entered on the computer are not
changed on the way to the server, which is the focus of our two security exten-
sions. Bottoni and Dini [8] use a secure device to secure transactions between a
user and a merchant. This is conceptually similar to our QR-TAN approach [3].
However, in this work we secure transactions between the user and the smart
card itself. While our techniques rely on a trusted device or execution platform,
Aussel et. al [9] include security-hardened monitors into applications running on
untrusted platforms and use USB (Universal Serial Bus) smart cards to verify the
log data provided by the monitors. Consequently, this approach could comple-
ment our techniques if no trusted execution environment is available, providing
less security than a dedicated secure hardware device, of course.

Conclusion. Related work and existing implementations prove that connectivity
of smart cards is a well researched topic. However, real Internet smart cards [10]
able to communicate directly using the IP protocol are not yet widely avail-
able on the market. Furthermore, all existing evaluated solutions require custom
on-card software for communication with the terminal. In comparison to ex-
isting work, our approach strives to partition trust requirements between Web
applications and different smart cards and, additionally, features advanced secu-
rity capabilities that allow to mitigate attacks due to insecure terminals. While
Internet smart cards do not require our proxy application for Internet access,
they do not provide equivalent capabilities for request filtering on the terminal.
However, combining Internet smart cards with our two security mechanisms dis-
cussed in Sections 5 and 6 would allow to improve these cards’ security in regard
to man-in-the-middle attacks.

3 Architecture and Trust Model

This section presents our overall system architecture and the different security
constraints. Due to the different trust requirements of the different entities, the
problem we solve can be seen as a type of multilateral security [11] problem. For
example, the user and the Web server both trust the smart card, but neither does
the user trust executable code provided by the Web server, nor does the Web
server trust executable code provided by the user. And while the user may place
considerable trust into her own hardware, this hardware may not be trustworthy
enough for the Web application in regard to non-repudiability requirements.

An overview of our architecture is given in Figure 1, which illustrates the ma-
jor components and communication paths, but not the sequence of interactions
detailed later. Figure 1(a) shows the architecture when used in combination
with TPM and Figure 1(b) shows the architecture when used in combination
with QR-TAN. The black arrows indicate direct communication paths between
two entities while the highlighted broader lines in the background depict the se-
cure channels in our system. If a secure channel spans several black arrows, this
means that the intermediate entities are untrusted and data are passed through
that entities by means of encryption or digital signatures. The trust relations



4 Guenther Starnberger et al.

Web browser

measure dynamic root

Secure
channel

Communication

(a) TPM

Web browser

(b) QR-TAN

Fig. 1. System components

between the constituents described in the following paragraphs are depicted in
Figure 2. Arrows labelled “high” indicate that a component is highly trusted,
while “partial” indicates a lower trust relationship.

Web application and Web server. The Web application is an entity that wants
to interact with the smart card; for example a banking site that requires a digital
signature before conducting a transaction. The user trusts the Web application
for communication with the smart card. However, the user does not trust the
Web application with unrestricted access to her computer—e.g., to execute bi-
nary code obtained from the Web application. The server-side part of the Web
application is running on the Web server, while the client-side part of the Web
application is implemented in JavaScript and running on the Web browser. The
term “Web application” refers to the combination of these two components.

Web browser. The Web browser is the entity used to interact with the smart
card. It hosts the client-side part of the Web application and interacts with the
server-side part of the Web application and the smart card. The user needs to
trust the Web browser for the type of executed transaction. For low security
transactions such as reading a stored-value counter, a normal Web browser can
be used. For high security transactions, the trust in the Web browser can either
be increased by executing the Web browser inside a trusted environment (see
Sect. 5), or the trust requirements in the Web browser can be decreased by
outsourcing part of the transaction to a trusted secure device (see Sect. 6).

Proxy. The proxy is our application responsible for mapping requests from a
Web browser to a smart card. Combined with our generic mapping approach
(Sect. 4), only a single generic proxy provided by a trusted vendor is required
to be installed in order to allow access to smart cards from a multitude of
authorized Web applications using state-of-the-art Web technologies. The trust
requirements in the proxy are two-fold: From a user’s perspective, the proxy is
running on a semi-trusted platform as the proxy is started on her local operating
system. Thus, some security features—such as controlling which type of APDUs



A Generic Proxy for Secure Smart Card-Enabled Web Applications 5

Web server

High

Proxy

For the provided
services: High

For the provided
services: High

High

Partial

Smart 
card

For the provided
services: High

User

Fig. 2. Trust relations

(Application Protocol Data Unit) can be transmitted to smart cards are taken
care of by the proxy. However, from a smart card issuers perspective the proxy is
not necessarily trusted, as malware could control the computer. Thus, the smart
card issuer can mandate additional security measures such as the authentication
over a TPM (Sect. 5) or QR-TANs [3] (Sect. 6).

Smart card. A smart card is issued by an entity such as a local bank and is
responsible for signing sensible data and/or for executing sensitive transactions.
User and Web application have trust in the smart card’s correctness. However,
the user does not have a direct input and output path to the smart card. Thus,
malware can manipulate the user’s communication with the smart card.

4 Our Generic Proxy and Mapping Approach

Our generic proxy Web-enables smart cards without installation of custom on-
card software and hence is applicable to a large range of existing smart cards.
In sections 5 and 6, we enhance our approach to provide even better security in
particular against malware for cases where the on-card software can be adapted.

The developed mapping technique uses a proxy to provide Web applications
with access to smart cards and—in addition—protect the smart card from mali-
cious Web applications. In contrast to existing techniques, our generic mapping
allows a single executable to be used for a diverse set of Web applications and
smart cards, not requiring the user to trust and execute code obtained from
different Web sites. We validated our concepts with prototype implementations,
showing that (i) the proxy concept is feasible in practice, (ii) correctly serves as
a filter between Web applications and smart cards, and (iii) allows Web access
to smart cards using state-of-the-art Web technologies.

Our system uses a mapping configuration to map abstract method calls to
APDUs; an example is shown in Figure 3. This configuration defines how in-
voked methods with their arguments are mapped to APDUs and how results
are mapped back to a structure. Furthermore, it includes a list of trusted ori-
gins, defining Web sites that may use the mapping, and a list of ATRs (Answer
To Reset—an ATR identifies a smart card), identifying accessible cards. An
AID (Application Identifier) identifies the respective smart card application.
The mapping is cryptographically signed by the card issuer with a key certified
by a Privacy CA (Privacy Certificate Authority).



6 Guenther Starnberger et al.

<mapping>
<smartcard atr="3b134028351180" aid="A00000006203010C0202" />
<method name="login">

<request>
<args><arg name="pin" type="STRING" /></args>
<apdu−mapping is="D4"><argument name="pin" /></apdu−mapping>

</request>
<response />

</method>
</mapping>

Fig. 3. Request mapping example

Mapping procedure. The following steps detail how a Web application can call
a particular method defined in the mapping file. The interaction between the
different components is shown in Figure 4.

1. The Web browser obtains a mapping definition and transmits the mapping
to the proxy via an RPC (Remote Procedure Call) call by using JavaScript.

2. The proxy verifies that the origin of the client-side Web application part run-
ning in the Web browser matches the origin defined in the mapping file—e.g.,
by providing a secret to the Web application over a callback—and verifies
the signature of the mapping.

3. The proxy verifies that there is a card in the reader and that the ATR of the
card matches the ATR of the mapping. If the ATR is different, or if during
the remaining process the ATR changes (e.g., because the card is replaced),
the proxy will reset.

4. The proxy either asks the smart card if the public key used to sign the map-
ping should be trusted, or—alternatively—only verifies if the public key has
been signed by a trusted certificate authority. If one of the options succeeds,
the process is continued. Otherwise, the process is aborted.

5. The proxy receives RPC requests from the Web application’s JavaScript code
running inside the browser and converts them to APDUs according to the
mapping. These APDUs are subsequently transmitted to the smart card.
After the response APDU is received from the smart card it is converted
and sent back to the application running in the Web browser.

Summarized, to protect smart cards from malicious Web applications we first
identify the type of smart card connected to the PC. We proceed by verifying if
the smart card provider has authorized the mapping file1 provided by the Web
application for this particular type of smart card. If this verification succeeds,
this mapping is then used to restrict which Web applications can access the
smart card and to restrict the type of APDUs that the Web application may
transmit to the smart card.

1 The authorization of a Web application’s mapping file is an administrative task
in contrast to the development and installation of on-card software, which would
require re-distribution of smart cards.



A Generic Proxy for Secure Smart Card-Enabled Web Applications 7

Card reader

Mapping

1a
1b

2

3

4
5

5
Smart card Proxy Web browser

Fig. 4. Mapping procedure

5 Smart Card-Based TPM Attestation

This and the next section show extensions for establishment of a secure channel
between the smart card and either (i) the Web browser running in a secure
environment, or (ii) a mobile device trusted by the user. Both extensions require
the support of on-card software.

The first approach discussed in this section uses an end-to-end security pro-
tocol between the smart card and the Web browser that provides authentication,
integrity and confidentiality between the two endpoints. Our protocol works on
a layer between APDU transmission and APDU interpretation. Conceptually, it
can be compared to TLS. However, instead of desktop computers it targets smart
cards and uses the remote attestation features of TPM that allow a remote party
to verify if a computer is running a particular software configuration. The main
requirements of our protocol are: (i) Authentication: Each party must be able to
securely authenticate the other party. (ii) Integrity : Each party must be able to
verify that the transmitted data has not been manipulated. (iii) Confidentiality
(optionally): End-to-end encryption between the parties must be possible.

The first two items are required to prevent manipulation of transmitted data:
Without authentication of the remote party, an attacker could directly establish
a connection to one of the parties. Furthermore, without integrity of individual
data items, an attacker could use a man-in-the-middle attack to manipulate these
data items while in transit. The third item is optional: Without encryption, a
man-in-the-middle is able to read transmitted information, but she is not able
to manipulate this information. By using encryption, we can prevent an attacker
from learning information about ongoing transactions.

In the following sections we first introduce the TPM functionality we use
for remote attestation. Afterwards, we continue with a description of our se-
cure channel that provides authentication, integrity and confidentiality. While
a secure channel is already part of the Global Platform specification (http:
//www.globalplatform.org/), the specification assumes that there is a shared
secret key between smart card and accessor. However, as we want to enable ac-
cess to smart cards from different Web sites, a shared secret between the smart
card and each individual Web site is infeasible.

5.1 Secure Computer Model

For the endpoint of our end-to-end security protocol on the local computer (see
Figure 1(a)) we assume a computer model that allows to create a secure runtime



8 Guenther Starnberger et al.

partition in which software is executed that cannot be accessed or manipulated
by the user’s (default) operating system. This secure partition hosts a browser
instance used for communication with the smart card. Furthermore, the secure
partition allows for remote attestation—allowing a remote entity to securely
identify the executed software. To provide compatibility across different types
of trusted environments, our model does not assume any further features. In
particular, we do not assume that it is possible to open a secure channel to I/O
devices such as smart card readers. This is in accordance with the current state
of trusted environments, where applications can open secure channels only to
some types of I/O devices such as monitors and keyboards [12,13].

There are different technologies that allow for the creation of such a secure
partition. One technology is Intel’s Trusted Execution Technology (Intel TXT)
that complements the functionality of a TPM by allowing a secure hypervisor
to provide virtual environments that are protected from access by malicious
applications. For remote attestation, a TPM can be used. The Xen hypervisor
provides a vTPM [14] implementation that provides virtual TPM chips [15] to
the executed instances. These virtual TPMs use features of the host’s hardware
TPM for the secure implementation of their different functions.

5.2 Establishing a Shared Secret for HMAC and Encryption

As basis for encryption and authentication we use a shared secret between smart
card and Web browser running in a trusted environment. To establish this secret
we use an authenticated Diffie-Hellman (DH) key exchange [16] as depicted in
Figure 5. The variables g, p, A, B in the figure are Diffie-Hellman parameters.
For authentication, we sign the parameter set sent by each of the parties with
digital signatures that prevent man-in-the-middle attacks. On the smart card we
use an asymmetric key that is certified by the smart card manufacturer, while
on the TPM we use the AIK (Attestation Identity Key) for authentication.

Instead of using Diffie-Hellman, it would also be possible to generate the
symmetric key on one of the endpoints and use asymmetric encryption to transfer
this key to the other endpoint. However, with such a method the long-term
security of the communication would depend on the security of the particular
asymmetric key. If the asymmetric key would be broken, each symmetric key
encrypted with this key in the past would be compromised. With Diffie-Hellman
on the other hand, an attacker needs to crack each session key individually.

5.3 Mutual Authentication and Integrity

Mutual authentication allows each endpoint of a conversation to authenticate
the identity of the opposing endpoint. Authentication and integrity are inter-
twined concepts: When endpoint authentication is used without data integrity,
an adversary can exchange data while in transit. Likewise, if data integrity is
used without endpoint authentication, an endpoint knows that the data have
not been modified, but does not know the identity of the remote endpoint.

In this section we provide our approach for authentication and integrity.
There are two endpoints (see Figure 1(a)): The smart card and the Web browser



A Generic Proxy for Secure Smart Card-Enabled Web Applications 9

DH parameters #1: g,p,a,NonceEven,signatureFromCard(hash(g,p,A,nonceOdd);
DH parameters #2: B,signatureFromTPM(hash(B,NonceEven));

D
H

 p
ar

am
et

er
s 

#1

N
once O

dd

D
H

 param
eters #2

Trusted boot 
container c

Smart card s

Fig. 5. Exchange of Diffie-Hellman parameters for secure channel. A nonce is used to
prevent replay attacks. Each endpoint transfers cryptographically signed DH parame-
ters to the other endpoint. These parameters are then used to establish the key for the
secure channel.

running in a trusted environment. Authentication uses authenticated Diffie-
Hellman key exchange, while integrity uses HMACs (Keyed-Hash Message Au-
thentication Codes).

Each smart card stores a custom key pair generated on initialization and
digitally signed by the smart card issuer. When transmitting Diffie-Hellman
parameters, the smart card signs them with its private key and appends the
public key together with the certificate of the issuer to the data structure as
shown in Figure 5.

On the PC, the TPM Quote command of the TPM is used to sign the content of
particular PCRs (Platform Configuration Registers) that contain measurements
of the executed software used to identify a particular software configuration.
When PCRs are updated, the TPM combines the existing value with the new
value, thus software running on the computer is not able to set the registers to
arbitrary values. By cryptographically signing the values within the registers,
the TPM chip can attest the state of the system to a remote system. This
functionality is also called remote attestation.

The certification of the TPM’s key is more complex than in the case of the
smart card. Figure 6 shows the certification and attestation procedure, illustrat-
ing which entity certifies which other entity to build up a chain of trust that
allows the smart card to verify a correct software execution environment. The
TPM contains two different types of keys: The unmodifiable EK (Endorsement
Key) generated during production and certified by the TPM’s manufacturer
and a modifiable AIK used for attestation. A Privacy CA (Privacy Certificate
Authority) with knowledge about EK and AIK is responsible for certifying the
AIK [12,13]. During attestation, the AIK signs a set of values that identifies the
executed software. The smart card compares these values with a set of reference
values identifying a particular browser appliance and signed by a trusted party
(e.g., the smart card issuer).

5.4 APDU Encryption and Authentication

For the encryption and authentication of APDUs we use a protocol similar to
smart card secure messaging defined in ISO/IEC 7816-4. The main reason why



10 Guenther Starnberger et al.

EK

AIK

ce
rt

ifi
es

Privacy CA PCR State

Expected 
PCR State

Trusted 
party

certifiescertifies

certifies

co
m

pa
re

TPM

TPM 
manufacturer

certifies

TPM

Fig. 6. Certification and attestation procedure

we cannot directly use secure messaging is that secure messaging requires a
shared key between smart card and terminal. However, in our application sce-
nario, this is not feasible as we want to enable secure communication with the
smart card from a wide range of Web applications.

In theory, it would be possible to use the secret we established in Section 5.2
as the basis of a ISO/IEC 7816-4 compliant communication established directly
by the smart card’s operating system. However, as common smart card operating
systems do not allow for access to the particular layer by client applications,
this option is not possible. Instead, we re-implement comparable functionality
inside the application layer, transmitting secured data as payload in APDUs.
Therefore, APDU encryption and authentication allows us to establish a secure
channel between smart card and Web browser.

APDUs are encrypted and authenticated by calculating encrypt(session key,
hmac(session key, orig apdu + counter) + orig apdu + counter) using a sym-
metric encryption protocol such as AES (Advanced Encryption Standard). If
no encryption is required, using an HMAC without encryption is possible. The
HMAC serves to detect manipulation attempts of the APDU. The counter al-
lows to detect replay attacks: In the beginning, a counter value derived from the
shared key is used. As the session proceeds, each endpoint increases the counter
value by one for each request and each response. Furthermore, each endpoint
can detect if the received counter value matches the expected counter value. As
a side effect, the counter also acts as a type of initialization vector (IV), as two
equal APDUs encrypt to two different cipher texts.

5.5 Security Discussion

One issue with the certification of the PCR state by the smart card is that if the
Privacy CA only certifies that the AIK belongs to any valid TPM implemen-
tation, it would be sufficient for an adversary to obtain the private key of any
certified TPM to apply signatures. To cause a security problem the adversary
would need to (i) break the user’s environment so that the browser does not
run inside a secure environment with the effect that malware has access to the
software and (ii) to sign the TPM’s side of the transaction with a certified key
from another broken TPM implementation.



A Generic Proxy for Secure Smart Card-Enabled Web Applications 11

One option for the mitigation of such an issue would be for the Privacy CA to
not only certify that the key belongs to any TPM implementation, but to further
include a user identifier in the certificate. This certificate can then be used by the
smart card to verify that the TPM belongs to an authorized user. Another option
is to remember the first TPM key used for authentication and to only allow this
particular key for future transactions. While this does not help against malware
on a freshly installed PC, it protects the user against later attacks. However,
to use another PC, a user would first need to obtain a certificate from the card
issuer that instructs the smart card to reset the stored key.

When a secure channel is used, there is an important difference in the be-
havior of the intermediate proxy: In unencrypted communication, the proxy is
responsible for filtering the requests, i.e., to only allow requests whitelisted in
the mapping to pass. However, when encryption is used, such a filtering is not
possible as the proxy does not have access to the plain text. Thus, the proxy
cannot verify if a particular encrypted APDU is allowed by the mapping file. As
the proxy cannot filter requests sent to smart cards in that case, smart cards
need to be developed with the assumption that potentially any Web site can
send requests. While a majority of smart cards is already designed to withstand
external attacks, the optimal mitigation strategies in our scenario are different.
Traditionally, a smart card does, e.g., deactivate itself, if large amounts of failed
authentication attempts are detected. However, if any Web application can com-
municate with the smart card, a Web application could abuse such a behavior for
a DoS (Denial of Service) attack: By deliberately causing failed authentication
attempts, any Web application could disable the smart card.

As mitigation strategy, smart cards should not take any destructive actions
in case of failed authentication attempts or other types of security alerts that
can be caused by external Web applications. For example, instead of deactivating
the smart card in case of multiple failed authentication attempts the smart card
could just increase the minimum interval required between each authentication
attempt. As an alternative, the on-card application responsible for the secure
connection can filter requests according to the information in the mapping—and
thereby accomplish the filtering task of the proxy.

6 Authentication with QR-TAN

This section presents the second option to increase the security of the proxy, by
extending our system with QR-TANs [3]. QR-TANs are a transaction authen-
tication technique that uses a secure device to allow users to securely confirm
electronic transactions on remote systems. A user scans a two dimensional bar-
code containing information about a transaction with a secure device. The secure
device allows the user to verify the transaction. To approve the transaction, the
user transmits a TAN (Transaction Authentication Number) dynamically gen-
erated by the secure device to the remote system. In comparison to our original
QR-TAN approach [3], our modifications allow the use of QR-TANs without the
interaction of a server.

Conceptually, it is sufficient to replace the RTC (Remote Trusted Computer)
in the original approach with a smart card. However, due to the different capabil-



12 Guenther Starnberger et al.

ities of smart cards and servers, modifications to the original approach allow for
better integration. In particular, our modifications address the following issues:

1. On smart cards, the generation of textual authentication requests intended
for humans is more complicated than on servers. Especially as the smart
card’s memory restricts the amount of stored localizations and as it is rather
complex to update the messages once the card has been issued.

2. The smart card should have the capability to decide if external transaction
authentication is required. For example, in banking applications a smart
card may allow daily transactions of up to a particular total value without
authentication, only requiring authentication above that value.

3. Usage of QR-TAN should be transparent to applications using the proxy.
Thus, only the smart card, the proxy, and the secure device should contain
QR-TAN specific code.

To enable these properties, we extend our mapping description to contain
information about QR-TAN authentication. In particular, we introduce a new
<auth /> section that describes which status words in the APDU response in-
dicate that QR-TAN authentication is required and how human readable text
is generated from the structure returned by the smart card. For authentication
the following steps depicted in Figure 7 are used:

Fig. 7. QR-TAN authentication steps.

1. On initialization the browser provides the mapping to the proxy. The proxy
transmits a hash and a certificate of the used mapping file signed by a trusted
third party to the smart card. The smart card verifies that the certificate
allows use of the given mapping file.

2. The Web browser sends its transaction request to the smart card.
3. The smart card responds with a particular status word indicating that QR-

TAN authentication is required for this type of transaction. The data of
the response contains a structure with information about the transaction, a
nonce, and the secure hash of the used mapping file.



A Generic Proxy for Secure Smart Card-Enabled Web Applications 13

4. The proxy reads the response by the smart card and converts it to a QR code
that is subsequently displayed to and scanned by the user’s secure device.

5. The secure device first checks if it has stored the mapping file indicated in
the QR code. If not, it prompts the user to install the mapping file—e.g., by
scanning a compressed QR code containing the mapping file. Otherwise, it
generates a human readable text according to the information in the mapping
file and asks the user for confirmation.

6. If the user confirms, the secure device generates a QR-TAN over the data
structure of the original request (in step 2), the nonce, and the hash of the
mapping file and presents this QR-TAN to the user.

7. When the user provides this QR-TAN to the proxy, it generates an APDU
with this information and sends it together with the nonce and the hash of
the mapping file to the smart card. The smart card validates if the QR-TAN
request for the particular nonce matches the hash of the information within
the APDU.

8. In case of success, the smart card returns the response of the original APDU
request issued in step 2.

The conversion of the transaction data to a human readable text can be
done on either one of the two endpoints of the QR-TAN authentication: Inside
the smart card or inside the trusted secure device. It is not possible to do this
conversion on any device between these two endpoints as this would prevent
from successful end-to-end authentication. In our approach we perform this con-
version inside the secure device. While generating the text directly within the
smart card would be conceptually simpler, it would require the smart card to
store potentially large amounts of textual data—e.g., if multiple localizations are
required. Furthermore, it is not easily possible to adapt the text once the smart
card has been issued.

As the secure device uses a mapping file to convert the structure with in-
formation about the transaction to a textual format, it must ensure that the
mapping file is also authenticated. Otherwise, an attacker would be able to send
a manipulated mapping file to the secure device, causing the device to show
incorrect transaction information to the user. It is not sufficient for the secure
device to only validate if the mapping file has been signed by a trusted party:
As the secure device cannot securely obtain the ATR (Answer To Reset) of the
smart card, it cannot ensure that the mapping file belongs to a particular smart
card. Instead, we include a hash of the mapping file in the structure that is
hashed by the secure device, allowing the smart card to ensure that the QR-
TAN belongs to a particular mapping. While the smart card does not need to
know the content of the mapping file, it needs to know the digital signature to
decide if it can trust the mapping. Thus, the proxy can send the signature of a
mapping to the smart card via APDUs.

By integrating our QR-TAN approach directly with the proxy, the proxy is re-
sponsible for displaying the QR code and for forwarding the QR-TAN back to the
smart card. Thus, the whole process can be transparent to applications using the
mapping, as the only difference between authentication and non-authentication
is the additional delay of the authentication process.



14 Guenther Starnberger et al.

7 Conclusion and Outlook

We presented a secure approach for Web-based smart card communication. Our
overall contributions are: (i) a secure technique using a single generic proxy to
allow a multitude of authorized Web applications to communicate with exist-
ing smart cards and (ii) techniques for new smart cards that allow for secure
end-to-end communication between a user and a smart card. In particular, our
security extensions cover the usage of (i) a TPM and (ii) QR-TANs to secure
communication with smart cards.

Especially with citizen cards recently introduced in several countries and with
high security requirements in online banking, a secure solution for Web-enabled
smart cards is required. Compared to related approaches, our system works with
existing smart cards without requiring changes to on-card software. Thereby, we
can increase the security of the user’s system, by not requiring the user to install
privileged software distributed by Web sites that require access to a smart card.
Furthermore, in cases where it is feasible to adapt on-card software, we can
increase the security over the state-of-the-art even further, as we can use the
TPM or QR-TANs to secure transactions that would otherwise be affected by
malware on the terminal.

Overall, we see that Web to smart card communication techniques are an area
where further research is required. In particular, researching the possibilities to
use state-of-the-art Web protocols for secure mashups [17] may provide viable
results, allowing smart cards to use standard Web protocols to identify and
authorize Web applications. However, with increasing usage of Web technologies
in smart cards also new kinds of attacks against smart cards are viable, as
malicious applications can now target the Web browser to gain access to the
smart card. Therefore, end-to-end security techniques are required to allow smart
cards to mitigate the risk of such attacks. Additionally, new approaches [18]
in automatic generation of network protocol gateways can allow for the more
efficient generation of Web to smart card mapping files.

Concluding, our research can serve as basis for a newer, more secure gener-
ation of smart card to Web communication. By combining the security features
of smart cards with the features provided by TPMs and QR-TANs, we can mit-
igate the effects of the terminal problem [19] as the smart card is able to assert
that the transaction data has not been manipulated. While future smart card
generations may require modifications to the specific techniques introduced in
this paper, the overall approach will still be applicable. Furthermore, recent de-
velopments such as the Trusted Execution Module (TEM) [20] allow for the
implementation of more powerful request mapping approaches on smart cards.

Acknowledgments. The authors would like to thank Markus Wilthaner for
the proof-of-concept prototype implementation of the work described in this
paper. This work has been partially funded by the Austrian Federal Ministry
of Transport, Innovation and Technology under the FIT-IT project TRADE
(Trustworthy Adaptive Quality Balancing through Temporal Decoupling, con-
tract 816143, http://www.dedisys.org/trade/).



A Generic Proxy for Secure Smart Card-Enabled Web Applications 15

References

1. Lu, H.K.: Network smart card review and analysis. Computer Networks 51(9)
(2007) 2234–2248

2. Leitold, H., Hollosi, A., Posch, R.: Security architecture of the austrian citizen
card concept. In: ACSAC, IEEE Computer Society (2002) 391–402

3. Starnberger, G., Froihofer, L., Goeschka, K.M.: QR-TAN: Secure mobile trans-
action authentication. In: Availability, Reliability and Security, 2009. ARES ’09.
International Conference on, Fukuoka (March 2009) 578–583

4. Itoi, N., Fukuzawa, T., Honeyman, P.: Secure internet smartcards. In Attali, I.,
Jensen, T.P., eds.: Java Card Workshop. Volume 2041 of Lecture Notes in Com-
puter Science., Springer (2000) 73–89

5. Urien, P.: Smarttp smart transfer protocol. Internet Draft (June 2001)
6. Urien, P.: TLS-tandem: A smart card for WEB applications. In: 6th IEEE Con-

sumer Communications and Networking Conf. CCNC 2009. (January 2009) 1–2
7. Lu, H.K., Ali, A.: Prevent online identity theft - using network smart cards for

secure online transactions. In Zhang, K., Zheng, Y., eds.: ISC. Volume 3225 of
Lecture Notes in Computer Science., Springer (2004) 342–353

8. Bottoni, A., Dini, G.: Improving authentication of remote card transactions with
mobile personal trusted devices. Computer Communications, Elsevier 30(8) (2007)
1697–1712

9. Aussel, J.D., d’Annoville, J., Castillo, L., Durand, S., Fabre, T., Lu, K., Ali,
A.: Smart cards and remote entrusting. In: Future of Trust in Computing,
Vieweg+Teubner (2009) 38–45

10. Márquez, J.T., Izquierdo, A., Sierra, J.M.: Advances in network smart cards au-
thentication. Computer Networks 51(9) (2007) 2249–2261

11. Rannenberg, K.: Multilateral security a concept and examples for balanced secu-
rity. In: NSPW ’00: Proceedings of the 2000 workshop on New security paradigms,
New York, NY, USA, ACM (2000) 151–162

12. Müller, T.: Trusted Computing Systeme. Xpert.press. Springer (2008)
13. Challener, D., Yoder, K., Catherman, R., Safford, D., Van Doorn, L.: A practical

guide to trusted computing. IBM Press (2007)
14. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:

Virtualizing the Trusted Platform Module. In: Proceedings of the 15th USENIX
Security Symposium, USENIX (August 2006) 305–320

15. England, P., Löser, J.: Para-virtualized tpm sharing. In Lipp, P., Sadeghi, A.R.,
Koch, K.M., eds.: TRUST. Volume 4968 of LNCS., Springer (2008) 119–132

16. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions
on Information Theory IT-22(6) (November 1976) 644–654

17. Hammer-Lahav, E., Cook, B.: The oauth core protocol. Internet Draft draft-
hammer-oauth-02 (March 2009)

18. Bromberg, Y.D., Réveillàre, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Middleware 2009. Volume 5896 of Lecture Notes
in Computer Science., Springer Berlin / Heidelberg (2009) 21–41

19. Gobioff, H., Smith, S., Tygar, J.D., Yee, B.: Smart cards in hostile environments.
In: WOEC’96: Proc. of the 2nd USENIX Workshop on Electronic Commerce,
Berkeley, CA, USA, USENIX Association (1996) 3–3

20. Costan, V., Sarmenta, L.F.G., van Dijk, M., Devadas, S.: The trusted execution
module: Commodity general-purpose trusted computing. In Grimaud, G., Stan-
daert, F.X., eds.: CARDIS. Volume 5189 of Lecture Notes in Computer Science.,
Springer (2008) 133–148




