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Abstract

A secure digital timestamp can assert the existence of
a particular document at a specific point in time. While
centralized timestamp servers show dependability draw-
backs with respect to node or link failures, e.g., outages
of the Internet connectivity, distributed timestamping pro-
tocols don’t have these drawbacks, but are nowadays rarely
seen in practice because of the distributed trust require-
ments and applicability issues.

In this paper, we contribute with: (i) A distributed time-
stamp protocol addressing practical applicability issues
with an efficient overlay routing architecture able to mini-
mize the effects of node churn and connection establishment
delays, at the cost of higher impacts of hop-to-hop latencies,
(ii) Smart card integration to introduce a distributed web of
trust and hence increase the security of applied timestamps,
and (iii) An evaluation using a prototype implementation
and network simulation that shows the performance gains
of our protocol in comparison to the state-of-the-art.

The properties of our protocol allow for its application
in scenarios where distributed timestamping protocols have
not been an option so far, for example, because of mutually
distrusting users. Furthermore, while many existing dis-
tributed timestamping protocols are only theoretically eval-
uated, we show the feasibility of our protocol with a proto-
type implementation.

1. Introduction

Timestamping protocols allow to certify that a particu-
lar document existed at a particular point in time. In prac-
tice, central timestamping servers operated by trusted third
parties are typically used. While such central timestamp
servers work fine in application scenarios where availability
is only secondary, they exhibit a lower dependability than

distributed timestamping approaches as server or network
outages or overload can lead to a loss of service or to inac-
curate timestamps.

While distributed timestamping protocols are a well re-
searched topic, centralized protocols are primarily used in
practice. Security issues in today’s distributed protocols are
one of the reasons, as each participant needs to trust that
a high percentage of other participants will cooperate. In
addition, communication between nodes is a problem. Usu-
ally, distributed timestamping protocols are built on the as-
sumption that each node can directly request a timestamp
from every other node. However, NAT (Network Address
Translation) traversal is often required for communication
between nodes on the Internet, leading to increased connec-
tion setup times, and thus decreased timestamp accuracy.
In addition, some of the nodes might not be active due to
node churn. In a traditional distributed timestamping proto-
col such inactive nodes will only be detected after trying to
send a request to these nodes, which can lead to inaccurate
timestamps.

In this paper we present our distributed timestamping
protocol. To increase the trustworthiness of the applied
timestamps, we augment user’s terminals with trusted smart
cards. Untrusted terminals are used for network communi-
cation and as interface to the user, while smart cards are
responsible for timestamping, cryptographic aspects, and
application level routing decisions. Thus, even an attacker
with full control over a user’s terminal has only limited op-
tions to attack our protocol. In addition, we provide an effi-
cient overlay routing protocol, which trades simplicity in
connection setup and maintenance for a lower latency in
timestamp transmission. While pre-establishment of out-
going connections leads to higher bandwidth and compu-
tational requirements, it allows to efficiently route requests
along pre-existing connections, without connection estab-
lishment or node lookup delays. However, this comes at
the cost of a higher impact of hop-to-hop latencies, as mes-
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sages now have to be routed along several hops. Finally, we
evaluate our approach with a prototype implementation and
simulation studies.

First, Section 2 discusses our timestamping protocol
with a focus on our overlay routing approach and efficient
connection establishment. Based on this, Section 3 contin-
ues with the evaluation using our prototype implementation
and a protocol simulation using the PeerSim [12] network
simulator. Afterwards, Section 4 discusses related work.
Finally, Section 5 concludes the paper with an outlook on
future work.

2. Timestamping protocol

This section discusses our distributed timestamping pro-
tocol that enables accurate and secure distributed time-
stamping in real world application scenarios. In comparison
to the state-of-the-art, our protocol allows for minimum la-
tency when deployed on the public Internet. In addition, we
increase the security by restricting which nodes are allowed
to timestamp particular messages.

In comparison to traditional “k among n” based proto-
cols [3]—where k timestamps are obtained from a set of n
nodes—our protocol benefits from the following character-
istics:

• Deterministic calculations without global state
We deterministically assign nodes responsible to time-
stamp a particular document allowing to subsequently
verify if a given document has been timestamped by
the correct nodes. Only an agreement on the approxi-
mate size of the network is required, instead of a global
agreement on the set n.

• Small latencies between hosts
Our protocol takes real-world network conditions into
account and is optimized for the fact that connection
establishment can be expensive due to NAT (Network
Address Translation) traversal. As we pre-establish
connections, connection setup times do not influence
the accuracy of timestamping. Furthermore, pre-
established connections allow to use keep-alive mes-
sages as simple failure detector to detect unavailable
nodes.

• Anonymity
While full anonymity is not a goal of our protocol, we
strive for semi-anonymity to make it more difficult to
assert the originator of a timestamping request. This
prevents individual participants from, e.g., deliberately
delaying requests of certain other participants.

• Smart card based security
Existing distributed timestamping protocols typically
assume semi-trusted nodes for the application of each

other’s timestamps, which is often not a reasonable as-
sumption. Therefore, we decrease trust requirements
by combining the user’s terminal with a smart card re-
sponsible for security-critical functionality.

To provide these benefits, we take the following trade-
offs in comparison with a traditional “k among n” approach
into account:

• Increased hop count
In comparison to “k among n” approaches, which do
not route messages along multiple hops, we increase
the overall length of the routing path and thereby
the influence of latency on the timestamp accuracy.
However, we keep hop-to-hop latencies low by pre-
establishing connections. Furthermore, nodes can de-
tect slow neighbors with our keep-alive mechanism, al-
lowing to replace them with faster nodes.

• Higher overhead
There is a higher total overhead due to the pre-
established connections and the DHT (Distributed
Hash Table). However, this overhead does not affect
the accuracy of timestamping requests and is a delib-
erate trade-off.

In the following subsections we first give a protocol
overview, followed by an examination of our Node IDs and
how values derived from these IDs are calculated. We then
continue by discussing our network structure, message rout-
ing, and connection establishment techniques.

2.1. Protocol overview

In our protocol each node is represented by the user’s
computer under full control of the user, as well as the trusted
smart card emitted by a trusted third party. While the main
protocol tasks are executed by the user’s terminal, the smart
card is responsible for the timestamping itself. In addition,
the smart card is also able to restrict routing decisions by the
terminal. Apart from users, nodes can also be operated by
trusted third parties to enhance the security of the protocol
by providing more trustworthy timestamps.

Our protocol is implemented as overlay network, with
timestamp routing performed on this overlay network. The
network is partitioned into sets of address ranges, where
each node belongs to exactly one particular address range.
To mitigate node churn, address ranges can be reassigned
(see Section 2.2) when the total number of nodes changes,
so that the number of nodes within an address range is rel-
atively constant. Each outgoing connection of a node has a
unique index number and is established to one node within
a deterministically identified address range. The respective
address range to which a connection is established is deter-
mined by factors such as the index number of the outgoing



connection, the local node’s own address range, and the cur-
rent time. Thus, a node is restricted in the choice of outgo-
ing connections. Open outgoing connections are regularly
recycled to increase diversity in routing paths.

When a timestamp request arrives, the hash of the re-
quest determines the routing path, which corresponds to the
index numbers at the respective nodes. Thus, timestamp
requests can be efficiently routed along the already pre-
established connections, without needing to establish new
connections. Due to the deterministic routing decisions,
external nodes can verify if timestamp requests have been
routed along the correct path.

2.2. Node IDs

A fundamental security feature of our protocol is to re-
strict the nodes that are allowed to apply a timestamp for
a given document. Typically, such restrictions are imple-
mented with “k among n” schemes [7], where k nodes are
required that can be chosen from a set of n nodes. In our
case we determine the set n from factors such as the hash
of the local node and the current time. We cannot directly
use IP addresses in this set, as these addresses are sparse and
unevenly assigned, which makes it difficult to define a func-
tion that returns an address range with a predefined number
of active nodes. Definition of such a function would only
be possible with the knowledge of all active node’s IDs.

Instead, we use an overlay network and perform the op-
erations on overlay node IDs, which are assigned in a cir-
cular address space. IDs are derived by hashing the user’s
public key and are thus randomly distributed. As the public
key pair of a node is generated directly on the smart-card
while the card is still under physical control of the trusted
third party, the user cannot use brute-force attacks to force
a node ID in a chosen ID range.

Furthermore, each node ID is member of exactly one ad-
dress range, with the whole address space partitioned into
r different ranges. While for each particular point in time
there is a deterministic mapping between node IDs and ad-
dress ranges, r can change over time, thereby affecting the
mapping of node IDs to address ranges. In practice, r will
be adapted to the total number of nodes, leading to a rela-
tively stable amount of active nodes within each particular
address range. Depending on the concrete application sce-
narios there are different approaches to estimate the total
amount of nodes. For example, if the Kademlia DHT [10]
is used, trusted nodes can estimate the amount of total nodes
by looking at the Kademlia bucket utilization and then cryp-
tographically sign and broadcast this information via the
overlay.

2.3. Derived values

In our protocol we use different derived values to de-
termine values such as address ranges. These derived val-

ues are used in place of random values (e.g., to determine
the routing path). Because of the deterministic calculation,
dishonest nodes cannot choose values at will, as external
observers can verify if the correct rules have been used to
obtain the values. In this section we specify how we map
these input values to their respective output values.

Derived values are the result of a hash functions with
the source element from which a value is derived combined
with an index used as the input. The index serves as dis-
tinguishing element when the same input element is used
to produce multiple output elements. For example, to de-
rive an address range for the fifth outgoing connection from
the node’s own address range we calculate new range =
hash(local range + index ), where new range identifies
the resulting address range, local range identifies the
node’s own address range, and index is set to 5 to repre-
sent the fifth outgoing connection.

In related work sometimes pseudo-random number gen-
erators are used for a similar purpose in “k among n”
schemes [7]. However, using a hash function allows for
non-sequential access to the individual values, for example,
if the smart card is used to verify the value of a particu-
lar outgoing connection. Furthermore, on smart cards the
respective optimized native implementations can be used
for hash functions, while the use of pseudo-random num-
ber generators would require access to the generator’s seed
which is often not possible.

2.4. Network structure

Our network is built as an overlay network between
nodes. At each point in time each node has exactly co out-
going and approximately ci incoming connections. When a
node sends a timestamp request to an outgoing connection,
the request arrives at the incoming connection of another
node. While communication channels are bidirectional, re-
quests only travel along outgoing connections, while replies
travel in the reverse directions.

When a new connection is established, this step is split
into two tasks: First, we use a mapping function that takes
(i) the particular index of the outgoing connection, (ii) the
node’s own address range, and (iii) the time as input. The
output of of this function is the address range to which the
connection will be established. Afterwards, the terminal
looks up one of the nodes within this address range and es-
tablishes an outgoing connection. For even better handling
of node churn, redundant connections into the same address
range can be established for immediate failover. This ap-
proach is explained in detail in Section 2.6.

Each of the outgoing connections is assigned an index
from 0 to co − 1. The routing path is calculated by the
source node and included within the message. For exam-
ple, a source node may specify that a message should travel
along the edges 1–2. The source node then relays the mes-
sage to its outgoing connection with the index 1, where the



Figure 1. Path selection: Path 1-2

node receiving the message continues relaying the message
to it’s own outgoing connection with the index 2.

The exact lookup mechanism used by the protocol to
find nodes within particular address ranges is not fixed and
can vary across implementations. For example, if a DHT
(Distributed Hash Table) such as Kademlia is used, a range
query can be used to find suitable candidates, while in the
case of JXTA [1] advertisements stored in a SRDI (Shared
Resource Distributed Index) would be used.

2.5. Message routing

This section describes how a message for a particular
timestamp is routed along the nodes. First, the node re-
questing a timestamp uses the hash of the document to
calculate the routing path of the message. For the rout-
ing path each hop is iteratively calculated with the for-
mula hopnext = hash(document hash + hop cnt), where
hop cnt indicates the index of the particular hop. The rout-
ing path is then embedded within the message that is to
be timestamped. Before sending a message, the originat-
ing node removes the first element from the routing path,
and forwards the message on the outgoing connection that
is identified by the element. Each node receiving the mes-
sage in sequence removes the first element from the routing
path and forwards the message to the respective outgoing
connection. Once the routing path in the message is empty
the message is not forwarded any further. An example of
this routing strategy is given in Figure 1 where the root node
calculates the routing path “1-2”.

To mitigate message loops where a message is relayed
back to a node that has already received this message in a
previous step, the first node originating the message vali-
dates that each address range is only traversed once. To do
so, the node simulates the message path, as it can locally
calculate to which address range an outgoing connection of
another node will connect. If a potential loop is detected,
because the message is relayed back to an address range
from which it has previously been forwarded, the hop cnt
used in the formula above is incremented, thus shifting the
hop cnt of the affected element and all remaining elements
by one. This algorithm is deterministic and only depends
on the partitioning of the system into the different address
ranges. Therefore, it allows to externally verify that the cor-

rect routing path was used. This verification depends on the
cryptographically signed address range partitioning param-
eter r (Section 2.2) that is embedded within the timestamp.

When a node sends or relays a message, the message it-
self is generated and signed by the smart card. This step
is required to prevent malicious nodes from injecting bo-
gus messages into the network. Therefore, the message also
needs to contain the concrete node ID of the next node, as
otherwise the user’s terminal would be able to inject a single
timestamping message to multiple nodes within the same
address range. The signatures applied by smart cards are
only used on a hop-by-hop basis. Thus, removal of an ele-
ment from the routing list does not affect signatures applied
by a preceding hop.

When a node receives a message from a neighboring
node it first verifies if the message has indeed been signed
by its neighbor and if the existing timestamp(s) in the mes-
sage are still current. Additionally, it verifies if the desti-
nation field of the message matches its own local node ID.
Before forwarding the message, the node locally stores a
timestamp for this message and the node ID from the node
from which the message was received, but does not include
this timestamp in the relayed message. When the last node
on the routing list receives the message it includes a time-
stamp and relays the message back to the node from which
it has been received. Each node then includes its previously
stored timestamp and continues relaying the message in the
reverse direction. When the message arrives at the initial
originator of the request, the message contains the time-
stamps assigned by all the nodes along the routing path.

2.6. Connection establishment

For regular connection establishment we use an ap-
proach that continuously renews existing connections to
provide diversity in the possible routing paths. With each
step only one single connection is renewed, thereby mini-
mizing the impact on the network setup. In addition, we
adapt our routing approach to prevent routing paths over
outgoing connections that will be renewed soon, as this
would prevent the sender from uniquely determining the
routing path, which is required for loop mitigation.

For example, consider that each node has 10 outgoing
connections and that within a 10 minute interval each out-
going connection should reconnect to a new address range.
When updating connections continuously, we can reconnect
a single connection once each minute. To avoid any routing
problems due to reconnecting nodes, a node can establish
a connection to the new address range in advance, and then
just switch connections when the interval of the current con-
nection ends. If the node is still waiting for a reply message
that was initially forwarded over the old connection, it can
additionally leave the old connection open until the reply
message has been received.



While the renewal of a connection does not directly af-
fect messages in transit, this renewal can lead to routing
loops, as the original mitigation strategy presented in Sec-
tion 2.5 only considers the network configuration at the time
of message creation. To mitigate such loops, we adapt the
routing mechanism not to use connections that will be re-
newed soon, e.g., to never use the next connection that will
be renewed. In such a case a similar strategy as for loop
mitigation is used: hop cnt is incremented, causing the al-
gorithm to calculate a different route. Of course, such an
approach requires that all nodes have a synchronized time.
This is not a problem in our case, as such a synchronized
time is already required for timestamping purposes.

To account for node churn, e.g., active nodes that change
their status to inactive, we use regular keep-alives to detect
stale connections. In this case a node will re-establish the
connection to another node within the same address range.
Such a connection establishment cannot lead to a routing
loop, as the address range of the old connection and the new
connection is the same. While node churn leads to overhead
due to higher reconnect rates, it does not affect latency, as
messages are routed only along pre-existing connections.

3. Evaluation

The evaluation of our protocol was conducted in two dis-
tinct steps. First, we used a prototype implementation to
show the feasibility of our approach and for performance
tests with low amounts of nodes. This implementation is
based on JXTA [1]. The Netim Linux kernel module is used
to accurately simulate network latency. Second, we used
the PeerSim [12] network simulator to examine the effects
of latency and churn. Significant parts of the prototype im-
plementation’s code have been reused in the simulation, en-
suring that the simulation’s behavior matches the prototype.
We also validated if the results of the simulation match the
results obtained in the prototype implementation.

The Figure 2 shows a comparison between the average
latency in our overlay routing approach and an alternative
approach that requires connection establishment for for-
warding. To model node-churn, we assume a node-failure
rate of 5%. If a message is transmitted to a failed node, it
cannot be processed, but is re-transmitted to another node.

In the results we observe that the latency without an over-
lay network is roughly twice as high as the latency in our
overlay approach. While in time synchronization protocols
latency can be mitigated by assuming synchronous network
delays, this is not possible in timestamping. Therefore, the
latency directly affects the timestamps assigned to individ-
ual documents. While in some application scenarios time-
liness of timestamps is only secondary—e.g., when only an
approximate date is required—in other application scenar-
ios such as deadline-based online auctions timeliness is a
fundamental property [5].
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Figure 2. Hop latency

In addition, our simulation has shown that the results
also depend on the assumed application scenario: In ap-
plication scenarios without node churn where UDP (User
Datagram Protocol) communication without NAT traversal
can be used between nodes, the differences between a tra-
ditional approach and our approach will be smaller, while
in application scenarios with considerable node churn the
differences will be higher. For example, if we decrease the
node failure rate from 5% to 0% in the scenario without
overlay network, this decreases the average delay at the fifth
hop from 355 ms to 338 ms, which is only a marginal im-
provement. On the other hand, if we increase the node fail-
ure rate to 30% this increases the average delay to 482 ms.
However, even in the first example with lower differences
our protocol allows more efficient routing without requiring
nodes to know all other nodes, while a traditional protocol
would require nodes to store information about other nodes,
if nodes are to be selected according to the document’s hash.

To examine the effects of node churn we simulated our
protocol with different median session times and tracked the
number of failed request. A request fails, if a node sending
a request does not receive the corresponding response, be-
cause an intermediate node cannot forward the request as no
outgoing connections to the respective node range are avail-
able. For our tests we assumed a hop count of 5 hops as well
as 3 redundant connections into each node range. The re-
sults in Figure 3 show that request failure rates are an issue
for median session times below approximately 40 minutes.
While failure rates are high for very low session times, they
decrease to less than 5% for median session times of 20
minutes or more and to less than 1% for median session
times of 40 minutes or more.

4. Related work

In this section we examine publications related to
our distributed timestamping protocol. Distributed time-
stamping approaches are discussed in [3, 6–9, 13, 14], but
only Nishikawa and Matsuoka [13] seem to actually have
implemented their approach and also consider lower level
issues such as the protocol for timestamp transmission. As
the protocol requires individual TCP connections, it leads to
higher latency than our overlay approach. [3] presents a “k



� �� �� �� �� �� ��
�

�

��

��

��

��

��

	
��
���
���������
������

�


���
�

��


�

��
�
�

Figure 3. Median Session Time vs. Failure
Rate

among n” timestamping scheme with redundancy to miti-
gate failed servers. Unlike our approach it requires synchro-
nization between servers and does not mitigate delays dur-
ing connection establishment. [14] suggests a timestamping
scheme with better scalability than classical treebased link-
ing scheme. In their work client latency depends mainly
on the transmission delay which can be reduced with our
approach. While [6] uses onion routing over an overlay net-
work for timestamping, it differs from our approach as the
path of the onion route is not dependent on the input docu-
ment and hence does not allow to specify and verify whether
correct timestamping nodes were chosen.

5. Conclusion

In this paper we presented our protocol that enables se-
cure distributed timestamping in a smart card based en-
vironment. The initial motivation for the protocol was
to provide a secure low-latency mechanism for document-
dependent routing and to decrease information required
at individual nodes to facilitate implementation on smart
cards. As a solution approach we have decoupled the setup
of the overlay network from the underlying routing mech-
anism. This allows for variable routing paths, while at the
same time allowing the system to route all messages along
pre-existing connections, which leads to a higher overhead
for connection setup and connection maintenance. While
hop-to-hop latencies are amplified by our overlay approach,
this can be mitigated with techniques such as Pharos [4] that
allow to find nodes with low latencies. Our evaluation has
shown that routing messages along existing connections on
an overlay network provides for considerably better perfor-
mance than state-of-the-art protocols.

While in some application scenarios timeliness of time-
stamping is not a considerable factor, other application sce-
narios benefit from performance increases in the millisec-
onds range. An example are online auctions [5] and dis-
tributed computer games traditionally using the lockstep
protocol [2], where better performance can be provided if
an accurate timestamping mechanism is available [11].
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